Marcio Briesemeister, John A Gómez-Sánchez, Pedro Bertemes-Filho, Sérgio Henrique Pezzin
{"title":"PVC/CNT Electrospun Composites: Morphology and Thermal and Impedance Behavior.","authors":"Marcio Briesemeister, John A Gómez-Sánchez, Pedro Bertemes-Filho, Sérgio Henrique Pezzin","doi":"10.3390/polym16202867","DOIUrl":null,"url":null,"abstract":"<p><p>Due to their mechanical robustness and chemical resistance, composite electrospun membranes based on polyvinyl chloride (PVC) are suitable for sensor applications. Aiming to improve the electrical characteristics of these membranes, this work investigated the effects of the addition of carbon nanotubes (CNTs) to PVC electrospun membranes, in terms of morphology and thermal and impedance behavior. Transmission electron microscopy images evidenced that most of the nanotubes were encapsulated within the fibers and oriented along them, while field-emission scanning electron micrographs revealed that the membranes consisted of uniform fibers with an average diameter of 339 ± 31 nm, regardless of the addition of the carbon nanotubes. With respect to the neat resin, the addition of nanotubes caused a significant lowering of the glass transition temperature (up to 20 °C) and a marked change in the second degradation step of PVC. Nyquist plots from electrical impedance spectra showed a charge transfer resistance (R<sub>CT</sub>) of 38 and 40 MΩ for neat PVC and PVC/CNT 3 wt.% membranes, respectively, indicating that, in the dry state, the encapsulation of CNTs in the fibers and the high porosity of the membranes prevented the formation of a percolation network, increasing the electrical resistance. In the wet state, however, there was a greater change in the impedance behavior, decreasing the resistance R<sub>CT</sub> to 4.5 and 1.1 MΩ, for neat PVC and PVC/CNT 3 wt.% membranes, respectively. The results of this study, showing a significant variation in impedance behavior between dry and wet membranes, are relevant for the development of various types of sensors based on PVC composites.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511136/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202867","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their mechanical robustness and chemical resistance, composite electrospun membranes based on polyvinyl chloride (PVC) are suitable for sensor applications. Aiming to improve the electrical characteristics of these membranes, this work investigated the effects of the addition of carbon nanotubes (CNTs) to PVC electrospun membranes, in terms of morphology and thermal and impedance behavior. Transmission electron microscopy images evidenced that most of the nanotubes were encapsulated within the fibers and oriented along them, while field-emission scanning electron micrographs revealed that the membranes consisted of uniform fibers with an average diameter of 339 ± 31 nm, regardless of the addition of the carbon nanotubes. With respect to the neat resin, the addition of nanotubes caused a significant lowering of the glass transition temperature (up to 20 °C) and a marked change in the second degradation step of PVC. Nyquist plots from electrical impedance spectra showed a charge transfer resistance (RCT) of 38 and 40 MΩ for neat PVC and PVC/CNT 3 wt.% membranes, respectively, indicating that, in the dry state, the encapsulation of CNTs in the fibers and the high porosity of the membranes prevented the formation of a percolation network, increasing the electrical resistance. In the wet state, however, there was a greater change in the impedance behavior, decreasing the resistance RCT to 4.5 and 1.1 MΩ, for neat PVC and PVC/CNT 3 wt.% membranes, respectively. The results of this study, showing a significant variation in impedance behavior between dry and wet membranes, are relevant for the development of various types of sensors based on PVC composites.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.