Enhancing classification accuracy of HRF signals in fNIRS using semi-supervised learning and filtering.

4区 医学 Q3 Neuroscience
Progress in brain research Pub Date : 2024-01-01 Epub Date: 2024-05-31 DOI:10.1016/bs.pbr.2024.05.009
Cheng-Hsuan Chen, Kuo-Kai Shyu, Yi-Chao Wu, Chi-Huang Hung, Po-Lei Lee, Chi-Wen Jao
{"title":"Enhancing classification accuracy of HRF signals in fNIRS using semi-supervised learning and filtering.","authors":"Cheng-Hsuan Chen, Kuo-Kai Shyu, Yi-Chao Wu, Chi-Huang Hung, Po-Lei Lee, Chi-Wen Jao","doi":"10.1016/bs.pbr.2024.05.009","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces a novel approach to enhance the classification accuracy of hemodynamic response function (HRF) signals acquired through functional near-infrared spectroscopy (fNIRS). Leveraging a semi-supervised learning (SSL) framework alongside a filtering technique, the study preprocesses HRF data effectively before applying the SSL algorithm. Collected from the prefrontal cortex, HRF signals capture variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels in response to odor stimuli and air state. Training the classification model on a dataset containing filtered and feature-extracted HRF signals led to significant improvements in classification accuracy. By comparing the algorithm's performance before and after employing the proposed filtering technique, the study provides compelling evidence of its effectiveness. These findings hold promise for advancing functional brain imaging research and cognitive studies, facilitating a deeper understanding of brain responses across various experimental contexts.</p>","PeriodicalId":20598,"journal":{"name":"Progress in brain research","volume":"290 ","pages":"83-104"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in brain research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.pbr.2024.05.009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a novel approach to enhance the classification accuracy of hemodynamic response function (HRF) signals acquired through functional near-infrared spectroscopy (fNIRS). Leveraging a semi-supervised learning (SSL) framework alongside a filtering technique, the study preprocesses HRF data effectively before applying the SSL algorithm. Collected from the prefrontal cortex, HRF signals capture variations in oxyhemoglobin (oxyHb) and deoxyhemoglobin (deoxyHb) levels in response to odor stimuli and air state. Training the classification model on a dataset containing filtered and feature-extracted HRF signals led to significant improvements in classification accuracy. By comparing the algorithm's performance before and after employing the proposed filtering technique, the study provides compelling evidence of its effectiveness. These findings hold promise for advancing functional brain imaging research and cognitive studies, facilitating a deeper understanding of brain responses across various experimental contexts.

利用半监督学习和过滤提高 fNIRS 中 HRF 信号的分类准确性。
本文介绍了一种提高通过功能性近红外光谱(fNIRS)获取的血液动力学响应函数(HRF)信号分类准确性的新方法。该研究利用半监督学习(SSL)框架和过滤技术,在应用 SSL 算法之前对 HRF 数据进行了有效的预处理。HRF 信号从前额叶皮层采集,捕捉氧合血红蛋白(oxyHb)和脱氧血红蛋白(deoxyHb)水平随气味刺激和空气状态的变化。在包含经过过滤和特征提取的 HRF 信号的数据集上训练分类模型可显著提高分类准确性。通过比较算法在采用拟议过滤技术前后的性能,该研究为其有效性提供了有力的证据。这些发现有望推动大脑功能成像研究和认知研究的发展,有助于加深对各种实验环境下大脑反应的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in brain research
Progress in brain research 医学-神经科学
CiteScore
5.20
自引率
0.00%
发文量
174
审稿时长
6-12 weeks
期刊介绍: Progress in Brain Research is the most acclaimed and accomplished series in neuroscience. The serial is well-established as an extensive documentation of contemporary advances in the field. The volumes contain authoritative reviews and original articles by invited specialists. The rigorous editing of the volumes assures that they will appeal to all laboratory and clinical brain research workers in the various disciplines: neuroanatomy, neurophysiology, neuropharmacology, neuroendocrinology, neuropathology, basic neurology, biological psychiatry and the behavioral sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信