Analysis of the difference between Alzheimer's disease, mild cognitive impairment and normal people by using fractal dimensions and small-world network.
{"title":"Analysis of the difference between Alzheimer's disease, mild cognitive impairment and normal people by using fractal dimensions and small-world network.","authors":"Wei-Kai Lee, Clay Hinrichs, Yen-Ling Chen, Po-Shan Wang, Wan-Yuo Guo, Yu-Te Wu","doi":"10.1016/bs.pbr.2024.07.005","DOIUrl":null,"url":null,"abstract":"<p><p>This research examined the distinctions in brain network characteristics among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI), and a control group. Magnetic resonance imaging (MRI) and mini-mental state examination (MMSE) data were retrieved from the Alzheimer's Disease Neuroimaging Initiative (ANDI) database, comprising 40 subjects in each group. Correlation maps for evaluating brain network connectivity were generated using fractal dimension (FD) analysis, a method capable of quantifying morphological changes in cortical and cerebral regions. Employing graph theory, each parcellated brain region was represented as a node, and edges between nodes were utilized to compute small-world network properties for each group. In the comparison between control and AD demonstrated the significantly lower FD values (P<0.05) in temporal lobe, motor cortex, part of occipital and parietal, hippocampus, amygdala, and entorhinal cortex, which present the atrophy. Similarly, comparing control group to MCIs, regions closely associated with memory, such as the hippocampus, showed significantly lower FD values. Furthermore, both AD and MCI groups displayed diminished connectivity and decreased network efficiency. In conclusion, fractal dimension (FD) analysis illustrate the progression of structural declination from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Additionally, structural small-world network analysis presents itself as a potential method for assessing network efficiency and the progression of AD. Moving forward, further clinical assessments are warranted to validate the findings observed in this study.</p>","PeriodicalId":20598,"journal":{"name":"Progress in brain research","volume":"290 ","pages":"179-190"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in brain research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.pbr.2024.07.005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Neuroscience","Score":null,"Total":0}
引用次数: 0
Abstract
This research examined the distinctions in brain network characteristics among individuals with Alzheimer's disease (AD), mild cognitive impairment (MCI), and a control group. Magnetic resonance imaging (MRI) and mini-mental state examination (MMSE) data were retrieved from the Alzheimer's Disease Neuroimaging Initiative (ANDI) database, comprising 40 subjects in each group. Correlation maps for evaluating brain network connectivity were generated using fractal dimension (FD) analysis, a method capable of quantifying morphological changes in cortical and cerebral regions. Employing graph theory, each parcellated brain region was represented as a node, and edges between nodes were utilized to compute small-world network properties for each group. In the comparison between control and AD demonstrated the significantly lower FD values (P<0.05) in temporal lobe, motor cortex, part of occipital and parietal, hippocampus, amygdala, and entorhinal cortex, which present the atrophy. Similarly, comparing control group to MCIs, regions closely associated with memory, such as the hippocampus, showed significantly lower FD values. Furthermore, both AD and MCI groups displayed diminished connectivity and decreased network efficiency. In conclusion, fractal dimension (FD) analysis illustrate the progression of structural declination from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Additionally, structural small-world network analysis presents itself as a potential method for assessing network efficiency and the progression of AD. Moving forward, further clinical assessments are warranted to validate the findings observed in this study.
期刊介绍:
Progress in Brain Research is the most acclaimed and accomplished series in neuroscience. The serial is well-established as an extensive documentation of contemporary advances in the field. The volumes contain authoritative reviews and original articles by invited specialists. The rigorous editing of the volumes assures that they will appeal to all laboratory and clinical brain research workers in the various disciplines: neuroanatomy, neurophysiology, neuropharmacology, neuroendocrinology, neuropathology, basic neurology, biological psychiatry and the behavioral sciences.