Numerical Simulation for Durability of a Viscoelastic Polymer Material Subjected to Variable Loadings Fatigue Based on Entropy Damage Criterion.

IF 4.7 3区 工程技术 Q1 POLYMER SCIENCE
Polymers Pub Date : 2024-10-10 DOI:10.3390/polym16202857
Yutong Li, M J Mohammad Fikry, Jun Koyanagi
{"title":"Numerical Simulation for Durability of a Viscoelastic Polymer Material Subjected to Variable Loadings Fatigue Based on Entropy Damage Criterion.","authors":"Yutong Li, M J Mohammad Fikry, Jun Koyanagi","doi":"10.3390/polym16202857","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to explore the impact of load history on the premature failure of the viscoelastic polymer matrix in carbon-fiber-reinforced plastics (CFRPs) using a method based on the concept of fracture fatigue entropy (FFE). A user-defined subroutine (UMAT) developed by the authors in previous studies was incorporated to apply the FFE damage criterion using ABAQUS software. Several variable-amplitude load modes, including frequent load amplitude changes and intermittent interruptions, were designed based on the conventional linear damage accumulation method (Palmgren-Miner rule), and the fatigue life under these loadings was obtained via numerical simulations. The results show that both frequent amplitude changes and even brief pauses in loading can accelerate damage accumulation, leading to premature failure of the polymer matrix. In these scenarios, the fatigue life ranged from 33.6% to 91.9% of the predictions made using the Palmgren-Miner rule, which shows significant variation and highlights cases in which the predicted fatigue life falls far short of expectations. This study offers a more practical and reliable approach for predicting fatigue life under complex loading conditions. Since the accuracy of the FFE criterion has been comprehensively validated in previous studies, this research focuses on its application to predict failure under variable loading conditions.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511374/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202857","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to explore the impact of load history on the premature failure of the viscoelastic polymer matrix in carbon-fiber-reinforced plastics (CFRPs) using a method based on the concept of fracture fatigue entropy (FFE). A user-defined subroutine (UMAT) developed by the authors in previous studies was incorporated to apply the FFE damage criterion using ABAQUS software. Several variable-amplitude load modes, including frequent load amplitude changes and intermittent interruptions, were designed based on the conventional linear damage accumulation method (Palmgren-Miner rule), and the fatigue life under these loadings was obtained via numerical simulations. The results show that both frequent amplitude changes and even brief pauses in loading can accelerate damage accumulation, leading to premature failure of the polymer matrix. In these scenarios, the fatigue life ranged from 33.6% to 91.9% of the predictions made using the Palmgren-Miner rule, which shows significant variation and highlights cases in which the predicted fatigue life falls far short of expectations. This study offers a more practical and reliable approach for predicting fatigue life under complex loading conditions. Since the accuracy of the FFE criterion has been comprehensively validated in previous studies, this research focuses on its application to predict failure under variable loading conditions.

基于熵损伤准则的粘弹性聚合物材料在不同载荷疲劳下的耐久性数值模拟
本研究旨在使用基于断裂疲劳熵(FFE)概念的方法,探讨载荷历史对碳纤维增强塑料(CFRP)粘弹性聚合物基体过早失效的影响。作者在之前的研究中开发了一个用户自定义子程序(UMAT),用于使用 ABAQUS 软件应用 FFE 损伤准则。根据传统的线性损伤累积法(Palmgren-Miner 规则)设计了几种变幅载荷模式,包括频繁的载荷振幅变化和间歇性中断,并通过数值模拟获得了这些载荷下的疲劳寿命。结果表明,加载过程中频繁的振幅变化甚至短暂的停顿都会加速损伤累积,导致聚合物基体过早失效。在这些情况下,疲劳寿命为使用帕尔姆格伦-米纳法则预测值的 33.6% 到 91.9%,显示出显著的差异,并突出了预测疲劳寿命远低于预期的情况。这项研究为预测复杂加载条件下的疲劳寿命提供了一种更实用、更可靠的方法。由于 FFE 准则的准确性已在之前的研究中得到了全面验证,因此本研究重点关注其在多变加载条件下预测失效的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymers
Polymers POLYMER SCIENCE-
CiteScore
8.00
自引率
16.00%
发文量
4697
审稿时长
1.3 months
期刊介绍: Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信