Enhanced Photovoltaic Performance of Poly(3,4-Ethylenedioxythiophene)Poly(N-Alkylcarbazole) Copolymer-Based Counter Electrode in Dye-Sensitized Solar Cells.
Sherif Dei Bukari, Aliya Yelshibay, Bakhytzhan Baptayev, Mannix P Balanay
{"title":"Enhanced Photovoltaic Performance of Poly(3,4-Ethylenedioxythiophene)Poly(<i>N</i>-Alkylcarbazole) Copolymer-Based Counter Electrode in Dye-Sensitized Solar Cells.","authors":"Sherif Dei Bukari, Aliya Yelshibay, Bakhytzhan Baptayev, Mannix P Balanay","doi":"10.3390/polym16202941","DOIUrl":null,"url":null,"abstract":"<p><p>Conducting polymers are emerging as promising alternatives to rare and expensive platinum for counter electrodes in dye-sensitized solar cells; due to their ease of synthesis, they can be chemically tuned and are suitable for roll-to-roll production. Among these, poly (3,4-ethylenedioxythiophene) (PEDOT)-based counter electrodes have shown leading photovoltaic performance. However, certain conductivity issues remain that affect the effectiveness of these counter electrodes. In this study, we present an electropolymerized PEDOT and poly(<i>N</i>-alkylated-carbazole) copolymer as an efficient electrocatalyst for the reduction in I3- in dye-sensitized solar cells. Copolymerization with <i>N</i>-alkylated carbazoles significantly increases the conductivity of the polymer film and facilitates rapid charge transport at the interface between the polymer electrode and the electrolyte. The length of the alkyl substituents also plays a crucial role in this improvement. Electrochemical analysis showed a reduction in charge transport resistance from 3.31 Ω·cm<sup>2</sup> for PEDOT to 2.26 Ω·cm<sup>2</sup> for the PEDOT:poly(<i>N</i>-octylcarbazole) copolymer, which is almost half the resistance of a platinum-based counter electrode (4.12 Ω·cm<sup>2</sup>). Photovoltaic measurements showed that the solar cell with the PEDOT:poly(<i>N</i>-octylcarbazole) counter electrode achieved an efficiency of 8.88%, outperforming both PEDOT (7.90%) and platinum-based devices (7.57%).</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202941","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Conducting polymers are emerging as promising alternatives to rare and expensive platinum for counter electrodes in dye-sensitized solar cells; due to their ease of synthesis, they can be chemically tuned and are suitable for roll-to-roll production. Among these, poly (3,4-ethylenedioxythiophene) (PEDOT)-based counter electrodes have shown leading photovoltaic performance. However, certain conductivity issues remain that affect the effectiveness of these counter electrodes. In this study, we present an electropolymerized PEDOT and poly(N-alkylated-carbazole) copolymer as an efficient electrocatalyst for the reduction in I3- in dye-sensitized solar cells. Copolymerization with N-alkylated carbazoles significantly increases the conductivity of the polymer film and facilitates rapid charge transport at the interface between the polymer electrode and the electrolyte. The length of the alkyl substituents also plays a crucial role in this improvement. Electrochemical analysis showed a reduction in charge transport resistance from 3.31 Ω·cm2 for PEDOT to 2.26 Ω·cm2 for the PEDOT:poly(N-octylcarbazole) copolymer, which is almost half the resistance of a platinum-based counter electrode (4.12 Ω·cm2). Photovoltaic measurements showed that the solar cell with the PEDOT:poly(N-octylcarbazole) counter electrode achieved an efficiency of 8.88%, outperforming both PEDOT (7.90%) and platinum-based devices (7.57%).
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.