Chemical and Resistive Switching Properties of Elaeodendron buchananii Extract-Carboxymethyl Cellulose Composite: A Potential Active Layer for Biodegradable Memory Devices.
Zolile Wiseman Dlamini, Sreedevi Vallabhapurapu, Jennifer Nambooze, Anke Wilhelm, Elizabeth Erasmus, Refilwe Mogale, Marthinus Rudi Swart, Vijaya Srinivasu Vallabhapurapu, Bheki Mamba, Wendy Setlalentoa, Tebogo Sfiso Mahule, Vanessa de Oliveira Arnoldi Pellegrini, Shaun Cronje, Igor Polikarpov
{"title":"Chemical and Resistive Switching Properties of <i>Elaeodendron buchananii</i> Extract-Carboxymethyl Cellulose Composite: A Potential Active Layer for Biodegradable Memory Devices.","authors":"Zolile Wiseman Dlamini, Sreedevi Vallabhapurapu, Jennifer Nambooze, Anke Wilhelm, Elizabeth Erasmus, Refilwe Mogale, Marthinus Rudi Swart, Vijaya Srinivasu Vallabhapurapu, Bheki Mamba, Wendy Setlalentoa, Tebogo Sfiso Mahule, Vanessa de Oliveira Arnoldi Pellegrini, Shaun Cronje, Igor Polikarpov","doi":"10.3390/polym16202949","DOIUrl":null,"url":null,"abstract":"<p><p>Biodegradable electronic devices play a crucial role in addressing the escalating issue of electronic waste accumulation, which poses significant environmental threats. In this study, we explore the utilization of a methanol-based extract of the <i>Elaeodendron buchananii</i> plant blended with a carboxymethyl cellulose biopolymer to produce a biodegradable and environmentally friendly functional material for a resistive switching memory system using silver and tungsten electrodes. Our analyses revealed that these two materials chemically interact to generate a perfect composite with near semiconducting optical bandgap (4.01 eV). The resultant device exhibits O-type memory behavior, with a low ON/OFF ratio, strong endurance (≥103 write/erase cycles), and satisfactory (≥103) data retention. Furthermore, through a comprehensive transport mechanism analysis, we observed the formation of traps in the composite that significantly improved conduction in the device. In addition, we established that altering the voltage amplitude modifies the concentration of traps, leading to voltage amplitude-driven multiple resistance states. Overall, our findings underscore the potential of functionalizing polymers that can be functionalized by incorporating plant extracts, resulting in biodegradable and nonvolatile memory devices with promising performance metrics.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511324/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202949","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Biodegradable electronic devices play a crucial role in addressing the escalating issue of electronic waste accumulation, which poses significant environmental threats. In this study, we explore the utilization of a methanol-based extract of the Elaeodendron buchananii plant blended with a carboxymethyl cellulose biopolymer to produce a biodegradable and environmentally friendly functional material for a resistive switching memory system using silver and tungsten electrodes. Our analyses revealed that these two materials chemically interact to generate a perfect composite with near semiconducting optical bandgap (4.01 eV). The resultant device exhibits O-type memory behavior, with a low ON/OFF ratio, strong endurance (≥103 write/erase cycles), and satisfactory (≥103) data retention. Furthermore, through a comprehensive transport mechanism analysis, we observed the formation of traps in the composite that significantly improved conduction in the device. In addition, we established that altering the voltage amplitude modifies the concentration of traps, leading to voltage amplitude-driven multiple resistance states. Overall, our findings underscore the potential of functionalizing polymers that can be functionalized by incorporating plant extracts, resulting in biodegradable and nonvolatile memory devices with promising performance metrics.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.