Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension.
Vladimir S Egorkin, Igor E Vyaliy, Andrey S Gnedenkov, Ulyana V Kharchenko, Sergey L Sinebryukhov, Sergey V Gnedenkov
{"title":"Corrosion Properties of the Composite Coatings Formed on PEO Pretreated AlMg3 Aluminum Alloy by Dip-Coating in Polyvinylidene Fluoride-Polytetrafluoroethylene Suspension.","authors":"Vladimir S Egorkin, Igor E Vyaliy, Andrey S Gnedenkov, Ulyana V Kharchenko, Sergey L Sinebryukhov, Sergey V Gnedenkov","doi":"10.3390/polym16202945","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents the results of an evaluation of corrosion properties of PEO pretreated AlMg3 aluminum alloy samples with polymer coatings obtained by dip-coating in a suspension of superdispersed polytetrafluoroethylene (SPTFE) in a solution of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone at different PVDF:SPTFE ratios (1:1, 1:3, 1:5, and 1:10). The electrochemical tests showed that samples with a coating formed at a ratio of PVDF to SPTFE of 1:5 possessed the best corrosion properties. The corrosion current density of these samples was more than five orders of magnitude lower than this parameter for bare aluminum alloy. During the 40-day salt spray test (SST) for samples prepared in a suspension at a PVDF:SPTFE ratio of 1:1-1:5, the formation of any pittings or defects was not detected. The PVDF:SPTFE 1:5 sample demonstrated, as a result of the 40-day SST, an increase in corrosion current density of less than an order of magnitude. The evolution of the protective properties of the studied samples was assessed by a two-year field atmospheric corrosion test on the coast of the Sea of Japan. It was revealed that the samples with the PVDF:SPTFE 1:5 coating had electrochemical parameters that remained consistently high throughout the one year of exposure. After this period, the polymer layer was destroyed, which led to a deterioration in the protective characteristics of the coatings.</p>","PeriodicalId":20416,"journal":{"name":"Polymers","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/polym16202945","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents the results of an evaluation of corrosion properties of PEO pretreated AlMg3 aluminum alloy samples with polymer coatings obtained by dip-coating in a suspension of superdispersed polytetrafluoroethylene (SPTFE) in a solution of polyvinylidene fluoride (PVDF) in N-methyl-2-pyrrolidone at different PVDF:SPTFE ratios (1:1, 1:3, 1:5, and 1:10). The electrochemical tests showed that samples with a coating formed at a ratio of PVDF to SPTFE of 1:5 possessed the best corrosion properties. The corrosion current density of these samples was more than five orders of magnitude lower than this parameter for bare aluminum alloy. During the 40-day salt spray test (SST) for samples prepared in a suspension at a PVDF:SPTFE ratio of 1:1-1:5, the formation of any pittings or defects was not detected. The PVDF:SPTFE 1:5 sample demonstrated, as a result of the 40-day SST, an increase in corrosion current density of less than an order of magnitude. The evolution of the protective properties of the studied samples was assessed by a two-year field atmospheric corrosion test on the coast of the Sea of Japan. It was revealed that the samples with the PVDF:SPTFE 1:5 coating had electrochemical parameters that remained consistently high throughout the one year of exposure. After this period, the polymer layer was destroyed, which led to a deterioration in the protective characteristics of the coatings.
期刊介绍:
Polymers (ISSN 2073-4360) is an international, open access journal of polymer science. It publishes research papers, short communications and review papers. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Polymers provides an interdisciplinary forum for publishing papers which advance the fields of (i) polymerization methods, (ii) theory, simulation, and modeling, (iii) understanding of new physical phenomena, (iv) advances in characterization techniques, and (v) harnessing of self-assembly and biological strategies for producing complex multifunctional structures.