Optimization and characterization of immobilized thermostable α-amylase from germinating Sword bean (Canavalia gladiata (Jacq.) DC.) seeds on DEAE-cellulose and chitosan bead for operational stability.
IF 1.4 4区 生物学Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"Optimization and characterization of immobilized thermostable α-amylase from germinating Sword bean (<i>Canavalia gladiata</i> (Jacq.) DC.) seeds on DEAE-cellulose and chitosan bead for operational stability.","authors":"Saijai Posoongnoen, Sutthidech Preecharram, Jinda Jandaruang, Theera Thummavongsa","doi":"10.5511/plantbiotechnology.24.0326a","DOIUrl":null,"url":null,"abstract":"<p><p>Thermostable α-amylase from germinating Sword bean (<i>Canavalia gladiata</i> (Jacq.) DC.) seeds has been successfully immobilized on DEAE-cellulose (ICgAmy1) and chitosan bead (ICgAmy2) support materials. Optimum conditions of immobilization for DEAE-cellulose and chitosan bead revealed 97% and 96% immobilization yield, respectively. The optimum pH and temperature of both DEAE-cellulose and chitosan bead immobilized α-amylases were pH 7 and 70°C. Both ICgAmy1 and ICgAmy2 were high stability over a wide pH range of pH 5-9 and a temperature range of 70-90°C. In addition, ICgAmy1 and ICgAmy2 led to an operationally stable biocatalyst with above 74% and 76% residual activity after 10 reuses, respectively. Immobilized α-amylases showed high storage stability with 81% (ICgAmy1) and 85% (ICgAmy2) residual activity after 120 days of storage. The easy immobilization process on low-cost, biodegradable, and renewable support materials exhibited an increase in the enzyme operation range and storage stability which reduces production costs. This makes immobilized amylases an effective biocatalyst in various industrial applications especially a potential candidate for bioethanol production, a key renewable energy source.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 2","pages":"129-136"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500564/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0326a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Thermostable α-amylase from germinating Sword bean (Canavalia gladiata (Jacq.) DC.) seeds has been successfully immobilized on DEAE-cellulose (ICgAmy1) and chitosan bead (ICgAmy2) support materials. Optimum conditions of immobilization for DEAE-cellulose and chitosan bead revealed 97% and 96% immobilization yield, respectively. The optimum pH and temperature of both DEAE-cellulose and chitosan bead immobilized α-amylases were pH 7 and 70°C. Both ICgAmy1 and ICgAmy2 were high stability over a wide pH range of pH 5-9 and a temperature range of 70-90°C. In addition, ICgAmy1 and ICgAmy2 led to an operationally stable biocatalyst with above 74% and 76% residual activity after 10 reuses, respectively. Immobilized α-amylases showed high storage stability with 81% (ICgAmy1) and 85% (ICgAmy2) residual activity after 120 days of storage. The easy immobilization process on low-cost, biodegradable, and renewable support materials exhibited an increase in the enzyme operation range and storage stability which reduces production costs. This makes immobilized amylases an effective biocatalyst in various industrial applications especially a potential candidate for bioethanol production, a key renewable energy source.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.