Improved biolistic transformation and genome editing in wheat by using trehalose for high osmotic treatment.

IF 1.4 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Chizu Yanagihara, Hiroshi Tsukamoto, Yuji Ishida, Toshihiko Komari
{"title":"Improved biolistic transformation and genome editing in wheat by using trehalose for high osmotic treatment.","authors":"Chizu Yanagihara, Hiroshi Tsukamoto, Yuji Ishida, Toshihiko Komari","doi":"10.5511/plantbiotechnology.24.0328a","DOIUrl":null,"url":null,"abstract":"<p><p>The tissue culture process is usually involved in gene transfer and genome editing in plants. Like other species, there is enormous variation among wheat genotypes in tissue culture response. In the rapidly advancing system of CRISPR/Cas9 for genome editing, particle bombardment has received increasing attention as a delivery method for a large amount of nucleic acids and RNA-protein complexes. However, the efficiency of transformation by particle bombardment has been low in wheat, and only a limited number of varieties have been transformed. In this study, replacement of maltose with trehalose as an osmolyte for high osmotic treatment for the protection of tissues from physical impacts improved callus formation in immature wheat embryos and efficiency of transformation and genome editing in varieties that are relatively poor in tissue culture response. The range of varieties amenable to biolistic transformation and genome editing may be expanded by this modification.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 2","pages":"159-163"},"PeriodicalIF":1.4000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500563/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0328a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The tissue culture process is usually involved in gene transfer and genome editing in plants. Like other species, there is enormous variation among wheat genotypes in tissue culture response. In the rapidly advancing system of CRISPR/Cas9 for genome editing, particle bombardment has received increasing attention as a delivery method for a large amount of nucleic acids and RNA-protein complexes. However, the efficiency of transformation by particle bombardment has been low in wheat, and only a limited number of varieties have been transformed. In this study, replacement of maltose with trehalose as an osmolyte for high osmotic treatment for the protection of tissues from physical impacts improved callus formation in immature wheat embryos and efficiency of transformation and genome editing in varieties that are relatively poor in tissue culture response. The range of varieties amenable to biolistic transformation and genome editing may be expanded by this modification.

利用曲哈洛糖进行高渗透处理,改进小麦的生物转化和基因组编辑。
组织培养过程通常涉及植物的基因转移和基因组编辑。与其他物种一样,小麦基因型在组织培养反应方面也存在巨大差异。在快速发展的 CRISPR/Cas9 基因组编辑系统中,粒子轰击作为一种传递大量核酸和 RNA 蛋白复合物的方法受到越来越多的关注。然而,颗粒轰击法在小麦中的转化效率一直很低,而且仅转化了有限数量的品种。在这项研究中,用曲卤糖代替麦芽糖作为渗透剂进行高渗透处理,以保护组织免受物理冲击,从而改善了未成熟小麦胚的胼胝体形成,并提高了组织培养反应相对较差品种的转化和基因组编辑效率。这种改良可能会扩大适合生物转化和基因组编辑的品种范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology
Plant Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-PLANT SCIENCES
CiteScore
2.90
自引率
18.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信