{"title":"Phonon-Coupled High-Harmonic Generation for Exploring Nonadiabatic Electron-Phonon Interactions.","authors":"Shi-Qi Hu, Hui Zhao, Xin-Bao Liu, Qing Chen, Da-Qiang Chen, Xin-Yuan Zhang, Sheng Meng","doi":"10.1103/PhysRevLett.133.156901","DOIUrl":null,"url":null,"abstract":"<p><p>High harmonic generation (HHG) have received significant attention for the exploration of material properties and ultrafast dynamics. However, the lack of consideration for couplings between HHG and other quasiparticles, such as phonons, has been impeding the understanding of many-body interactions in HHG. Here, we reveal the many-body electron-phonon mechanism in the quasiparticle-coupled strong-field dynamics by investigating the nonadiabatic (NA) coherent-phonon-coupled HHG. Coherent phonons are revealed to effectively affect HHG via the adiabatic band modulation induced by phonon deformation effects and the NA and nonequilibrium distribution of photocarriers in multiple valleys. The adiabatic and NA mechanisms leave their fingerprint via influencing the phonon period and phase delay in the oscillation of HHG intensity, both of which are experimentally measurable. Investigation of these quantities enables the direct probing of the electron-phonon interaction in materials.</p>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"133 15","pages":"156901"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevLett.133.156901","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
High harmonic generation (HHG) have received significant attention for the exploration of material properties and ultrafast dynamics. However, the lack of consideration for couplings between HHG and other quasiparticles, such as phonons, has been impeding the understanding of many-body interactions in HHG. Here, we reveal the many-body electron-phonon mechanism in the quasiparticle-coupled strong-field dynamics by investigating the nonadiabatic (NA) coherent-phonon-coupled HHG. Coherent phonons are revealed to effectively affect HHG via the adiabatic band modulation induced by phonon deformation effects and the NA and nonequilibrium distribution of photocarriers in multiple valleys. The adiabatic and NA mechanisms leave their fingerprint via influencing the phonon period and phase delay in the oscillation of HHG intensity, both of which are experimentally measurable. Investigation of these quantities enables the direct probing of the electron-phonon interaction in materials.
高次谐波发生(HHG)在探索材料特性和超快动力学方面受到极大关注。然而,由于缺乏对高次谐波与声子等其他准粒子之间耦合的考虑,一直阻碍着人们对高次谐波中多体相互作用的理解。在这里,我们通过研究非绝热(NA)相干声子耦合 HHG,揭示了准粒子耦合强场动力学中的多体电子-声子机制。研究揭示了相干声子通过声子形变效应诱导的绝热带调制以及光载流子在多谷中的 NA 和非平衡分布有效地影响了 HHG。绝热和 NA 机制通过影响 HHG 强度振荡中的声子周期和相位延迟留下了自己的指纹,而这两种机制都是可以通过实验测量的。通过对这些量的研究,可以直接探测材料中电子与声子的相互作用。
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks