Jamie E Spahn, Amr Hefnawy, Feng Zhang, Hugh D C Smyth
{"title":"Feasibility of a High-Dose Inhaled Indomethacin Dry Powder with Dual Deposition for Pulmonary and Oral Delivery.","authors":"Jamie E Spahn, Amr Hefnawy, Feng Zhang, Hugh D C Smyth","doi":"10.3390/pharmaceutics16101269","DOIUrl":null,"url":null,"abstract":"<p><p>In this study we have developed a high-dose dry powder inhaler formulation of indomethacin using a novel approach to carrier-based formulations. Specifically, larger drug particles serve as the carrier for the smaller micronized drug particles, such that an inhaled dose is combined with an oral dose. To study this system, the aerosol performance of a standard indomethacin-lactose formulation was compared to carrier-free micronized indomethacin and a drug-as-carrier formulation (a micronized indomethacin-coarse indomethacin blend). Indomethacin with lactose showed a very poor aerosol performance, indicating high adhesion between the drug and carrier. The performance of the carrier-free micronized drug was significantly better, indicating low cohesion. Coarse drug particles as a carrier allowed improved powder flow and aerosol performance while also providing a potential secondary route of absorption of indomethacin, namely oral. An optimal formulation ratio of 1:1 (<i>w</i>/<i>w</i>) fine indomethacin-coarse indomethacin was developed in this study.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510369/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16101269","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study we have developed a high-dose dry powder inhaler formulation of indomethacin using a novel approach to carrier-based formulations. Specifically, larger drug particles serve as the carrier for the smaller micronized drug particles, such that an inhaled dose is combined with an oral dose. To study this system, the aerosol performance of a standard indomethacin-lactose formulation was compared to carrier-free micronized indomethacin and a drug-as-carrier formulation (a micronized indomethacin-coarse indomethacin blend). Indomethacin with lactose showed a very poor aerosol performance, indicating high adhesion between the drug and carrier. The performance of the carrier-free micronized drug was significantly better, indicating low cohesion. Coarse drug particles as a carrier allowed improved powder flow and aerosol performance while also providing a potential secondary route of absorption of indomethacin, namely oral. An optimal formulation ratio of 1:1 (w/w) fine indomethacin-coarse indomethacin was developed in this study.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.