Annick Jeannerat, Cédric Peneveyre, Sandra Jaccoud, Virginie Philippe, Corinne Scaletta, Nathalie Hirt-Burri, Philippe Abdel-Sayed, Robin Martin, Lee Ann Applegate, Dominique P Pioletti, Alexis Laurent
{"title":"Banked Primary Progenitor Cells for Allogeneic Intervertebral Disc (IVD) Therapy: Preclinical Qualification and Functional Optimization within a Cell Spheroid Formulation Process.","authors":"Annick Jeannerat, Cédric Peneveyre, Sandra Jaccoud, Virginie Philippe, Corinne Scaletta, Nathalie Hirt-Burri, Philippe Abdel-Sayed, Robin Martin, Lee Ann Applegate, Dominique P Pioletti, Alexis Laurent","doi":"10.3390/pharmaceutics16101274","DOIUrl":null,"url":null,"abstract":"<p><p><b>Background/Objectives:</b> Biological products are emerging as therapeutic management options for intervertebral disc (IVD) degenerative affections and lower back pain. Autologous and allogeneic cell therapy protocols have been clinically implemented for IVD repair. Therein, several manufacturing process design considerations were shown to significantly influence clinical outcomes. The primary objective of this study was to preclinically qualify (chondrogenic potential, safety, resistance to hypoxic and inflammatory stimuli) cryopreserved primary progenitor cells (clinical grade FE002-Disc cells) as a potential cell source in IVD repair/regeneration. The secondary objective of this study was to assess the cell source's delivery potential as cell spheroids (optimization of culture conditions, potential storage solutions). <b>Methods/Results:</b> Safety (soft agar transformation, β-galactosidase, telomerase activity) and functionality-related assays (hypoxic and inflammatory challenge) confirmed that the investigated cellular active substance was highly sustainable in defined cell banking workflows, despite possessing a finite in vitro lifespan. Functionality-related assays confirmed that the retained manufacturing process yielded strong collagen II and glycosaminoglycan (GAG) synthesis in the spheroids in 3-week chondrogenic induction. Then, the impacts of various process parameters (induction medium composition, hypoxic incubation, terminal spheroid lyophilization) were studied to gain insights on their criticality. Finally, an optimal set of technical specifications (use of 10 nM dexamethasone for chondrogenic induction, 2% O<sub>2</sub> incubation of spheroids) was set forth, based on specific fine tuning of finished product critical functional attributes. <b>Conclusions:</b> Generally, this study qualified the considered FE002-Disc progenitor cell source for further preclinical investigation based on safety, quality, and functionality datasets. The novelty and significance of this study resided in the establishment of defined processes for preparing fresh, off-the-freezer, or off-the-shelf IVD spheroids using a preclinically qualified allogeneic human cell source. Overall, this study underscored the importance of using robust product components and optimal manufacturing process variants for maximization of finished cell-based formulation quality attributes.</p>","PeriodicalId":19894,"journal":{"name":"Pharmaceutics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510186/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/pharmaceutics16101274","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background/Objectives: Biological products are emerging as therapeutic management options for intervertebral disc (IVD) degenerative affections and lower back pain. Autologous and allogeneic cell therapy protocols have been clinically implemented for IVD repair. Therein, several manufacturing process design considerations were shown to significantly influence clinical outcomes. The primary objective of this study was to preclinically qualify (chondrogenic potential, safety, resistance to hypoxic and inflammatory stimuli) cryopreserved primary progenitor cells (clinical grade FE002-Disc cells) as a potential cell source in IVD repair/regeneration. The secondary objective of this study was to assess the cell source's delivery potential as cell spheroids (optimization of culture conditions, potential storage solutions). Methods/Results: Safety (soft agar transformation, β-galactosidase, telomerase activity) and functionality-related assays (hypoxic and inflammatory challenge) confirmed that the investigated cellular active substance was highly sustainable in defined cell banking workflows, despite possessing a finite in vitro lifespan. Functionality-related assays confirmed that the retained manufacturing process yielded strong collagen II and glycosaminoglycan (GAG) synthesis in the spheroids in 3-week chondrogenic induction. Then, the impacts of various process parameters (induction medium composition, hypoxic incubation, terminal spheroid lyophilization) were studied to gain insights on their criticality. Finally, an optimal set of technical specifications (use of 10 nM dexamethasone for chondrogenic induction, 2% O2 incubation of spheroids) was set forth, based on specific fine tuning of finished product critical functional attributes. Conclusions: Generally, this study qualified the considered FE002-Disc progenitor cell source for further preclinical investigation based on safety, quality, and functionality datasets. The novelty and significance of this study resided in the establishment of defined processes for preparing fresh, off-the-freezer, or off-the-shelf IVD spheroids using a preclinically qualified allogeneic human cell source. Overall, this study underscored the importance of using robust product components and optimal manufacturing process variants for maximization of finished cell-based formulation quality attributes.
PharmaceuticsPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
7.90
自引率
11.10%
发文量
2379
审稿时长
16.41 days
期刊介绍:
Pharmaceutics (ISSN 1999-4923) is an open access journal which provides an advanced forum for the science and technology of pharmaceutics and biopharmaceutics. It publishes reviews, regular research papers, communications, and short notes. Covered topics include pharmacokinetics, toxicokinetics, pharmacodynamics, pharmacogenetics and pharmacogenomics, and pharmaceutical formulation. Our aim is to encourage scientists to publish their experimental and theoretical details in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.