The involvement of lidocaine in amyloid-β1-42-dependent mitochondrial dysfunction and apoptosis in hippocampal neurons via nerve growth factor-protein kinase B pathway.
{"title":"The involvement of lidocaine in amyloid-β1-42-dependent mitochondrial dysfunction and apoptosis in hippocampal neurons via nerve growth factor-protein kinase B pathway.","authors":"Jianlian Guo, Yong Xu, Jie Liu, Xueqi Hou","doi":"10.1097/WNR.0000000000002105","DOIUrl":null,"url":null,"abstract":"<p><p>This project is conceived to reveal the role of lidocaine in the process of Alzheimer's disease (AD) and its possible downstream targets. After the employment of AD cell model in mice hippocampal neuronal HT-22 cells in the presence of amyloid-β1-42 (Aβ1-42), Cell Counting Kit-8 method investigated cell viability. Oxidative damage was assayed based on a dichloro-dihydro-fluorescein diacetate fluorescent probe and commercially available kits. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide fluorescent probe estimated mitochondrial function. Terminal-deoxynucleotidyl transferase mediated nick end labeling, western blotting, and immunofluorescence appraised the apoptotic level. Western blot also ascertained the alternations of nerve growth factors (NGF)-protein kinase B (Akt) pathway-related proteins. Aβ1-42 concentration dependently triggered the viability loss, oxidative damage, and apoptosis in HT-22 cells. Lidocaine promoted the viability and reduced the mitochondrial impairment and mitochondria-dependent apoptosis in Aβ1-42-treated HT-22 cells in a concentration-dependent manner. Besides, lidocaine activated the NGF-Akt pathway and NGF absence blocked NGF-Akt pathway, aggravated mitochondrial dysfunction as well as mitochondria-dependent apoptosis in lidocaine-administrated HT-22 cells in response to Aβ1-42. Altogether, these observations concluded that lidocaine might stimulate NGF-Akt pathway to confer protection against mitochondrial impairment and apoptosis in Aβ1-42-mediated cellular model of AD.</p>","PeriodicalId":19213,"journal":{"name":"Neuroreport","volume":" ","pages":"1123-1132"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroreport","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/WNR.0000000000002105","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/22 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This project is conceived to reveal the role of lidocaine in the process of Alzheimer's disease (AD) and its possible downstream targets. After the employment of AD cell model in mice hippocampal neuronal HT-22 cells in the presence of amyloid-β1-42 (Aβ1-42), Cell Counting Kit-8 method investigated cell viability. Oxidative damage was assayed based on a dichloro-dihydro-fluorescein diacetate fluorescent probe and commercially available kits. The 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide fluorescent probe estimated mitochondrial function. Terminal-deoxynucleotidyl transferase mediated nick end labeling, western blotting, and immunofluorescence appraised the apoptotic level. Western blot also ascertained the alternations of nerve growth factors (NGF)-protein kinase B (Akt) pathway-related proteins. Aβ1-42 concentration dependently triggered the viability loss, oxidative damage, and apoptosis in HT-22 cells. Lidocaine promoted the viability and reduced the mitochondrial impairment and mitochondria-dependent apoptosis in Aβ1-42-treated HT-22 cells in a concentration-dependent manner. Besides, lidocaine activated the NGF-Akt pathway and NGF absence blocked NGF-Akt pathway, aggravated mitochondrial dysfunction as well as mitochondria-dependent apoptosis in lidocaine-administrated HT-22 cells in response to Aβ1-42. Altogether, these observations concluded that lidocaine might stimulate NGF-Akt pathway to confer protection against mitochondrial impairment and apoptosis in Aβ1-42-mediated cellular model of AD.
期刊介绍:
NeuroReport is a channel for rapid communication of new findings in neuroscience. It is a forum for the publication of short but complete reports of important studies that require very fast publication. Papers are accepted on the basis of the novelty of their finding, on their significance for neuroscience and on a clear need for rapid publication. Preliminary communications are not suitable for the Journal. Submitted articles undergo a preliminary review by the editor. Some articles may be returned to authors without further consideration. Those being considered for publication will undergo further assessment and peer-review by the editors and those invited to do so from a reviewer pool.
The core interest of the Journal is on studies that cast light on how the brain (and the whole of the nervous system) works.
We aim to give authors a decision on their submission within 2-5 weeks, and all accepted articles appear in the next issue to press.