{"title":"Perspectives in Aptasensor-Based Portable Detection for Biotoxins.","authors":"Congying Li, Ziyuan Zhu, Jiahong Yao, Zhe Chen, Yishun Huang","doi":"10.3390/molecules29204891","DOIUrl":null,"url":null,"abstract":"<p><p>Biotoxins are pervasive in food and the environment, posing significant risk to human health. The most effective strategy to mitigate the risk arising from biotoxin exposure is through their specific and sensitive detection. Aptasensors have emerged as pivotal tools, leveraging aptamers as biorecognition elements to transduce the specificity of aptamer-target interactions into quantifiable signals for analytical applications, thereby facilitating the meticulous detection of biotoxins. When integrated with readily portable devices such as lateral flow assays (LFAs), personal glucose meters (PGMs), smartphones, and various meters measuring parameters like pH and pressure, aptasensors have significantly advanced the field of biotoxin monitoring. These commercially available devices enable precise, in situ, and real-time analysis, offering great potential for portable biotoxin detection in food and environmental matrices. This review highlights the recent progress in biotoxin monitoring using portable aptasensors, discussing both their potential applications and the challenges encountered. By addressing these impediments, we anticipate that a portable aptasensor-based detection system will open new avenues in biotoxin monitoring in the future.</p>","PeriodicalId":19041,"journal":{"name":"Molecules","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510259/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/molecules29204891","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Biotoxins are pervasive in food and the environment, posing significant risk to human health. The most effective strategy to mitigate the risk arising from biotoxin exposure is through their specific and sensitive detection. Aptasensors have emerged as pivotal tools, leveraging aptamers as biorecognition elements to transduce the specificity of aptamer-target interactions into quantifiable signals for analytical applications, thereby facilitating the meticulous detection of biotoxins. When integrated with readily portable devices such as lateral flow assays (LFAs), personal glucose meters (PGMs), smartphones, and various meters measuring parameters like pH and pressure, aptasensors have significantly advanced the field of biotoxin monitoring. These commercially available devices enable precise, in situ, and real-time analysis, offering great potential for portable biotoxin detection in food and environmental matrices. This review highlights the recent progress in biotoxin monitoring using portable aptasensors, discussing both their potential applications and the challenges encountered. By addressing these impediments, we anticipate that a portable aptasensor-based detection system will open new avenues in biotoxin monitoring in the future.
期刊介绍:
Molecules (ISSN 1420-3049, CODEN: MOLEFW) is an open access journal of synthetic organic chemistry and natural product chemistry. All articles are peer-reviewed and published continously upon acceptance. Molecules is published by MDPI, Basel, Switzerland. Our aim is to encourage chemists to publish as much as possible their experimental detail, particularly synthetic procedures and characterization information. There is no restriction on the length of the experimental section. In addition, availability of compound samples is published and considered as important information. Authors are encouraged to register or deposit their chemical samples through the non-profit international organization Molecular Diversity Preservation International (MDPI). Molecules has been launched in 1996 to preserve and exploit molecular diversity of both, chemical information and chemical substances.