T1/T2 Proportional Magnetic Resonance Nanoprobe Monitoring Tumor Autophagy during Chemotherapy.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-18 DOI:10.3390/nano14201673
Jia Cui, Taixing Zhang, Fei Wang, Lingzi Feng, Guangjun Deng, Ting Wu, Le Yin, Yong Hu
{"title":"T1/T2 Proportional Magnetic Resonance Nanoprobe Monitoring Tumor Autophagy during Chemotherapy.","authors":"Jia Cui, Taixing Zhang, Fei Wang, Lingzi Feng, Guangjun Deng, Ting Wu, Le Yin, Yong Hu","doi":"10.3390/nano14201673","DOIUrl":null,"url":null,"abstract":"<p><p>Autophagy leads to cellular tolerance of the therapeutic pressure of chemotherapeutic drugs, resulting in treatment resistance. Therefore, the effective monitoring of the autophagy status of tumors in vivo and the regulating of the autophagy level are crucial for improving the efficacy of chemotherapy. In this work, we grafted nitroxide radicals onto the surface of iron oxide nanoparticles (Fe<sub>3</sub>O<sub>4</sub> NPs) using dendrimer polymers, yielding Fe<sub>3</sub>O<sub>4</sub>-NO· NPs that are responsive to reactive oxygen species (ROS) and possess enhanced T1 and T2 signal capabilities in a magnetic resonance imaging (MRI) measurement. The ROS in tumor cells generated by autophagy quenches the nitroxide radicals, thereby weakening the T1 signal. In contrast, Fe<sub>3</sub>O<sub>4</sub> NPs are unaffected by intracellular ROS, leading to a stable T2 signal. By comparing the intensity ratio of T1 to T2 in Fe<sub>3</sub>O<sub>4</sub>-NO· NPs, we can evaluate the in vivo autophagy status within tumors in real time. It also revealed that Fe<sub>3</sub>O<sub>4</sub>-NO· NPs loaded with doxorubicin (Dox) and combining the autophagy inhibitor exhibited high antitumor activity in cells and tumor-bearing mice. This system, which combines real-time monitoring of tumor cell autophagy with the delivery of chemotherapeutic drugs, provides an innovative and effective strategy for tumor treatment with potential clinical application prospects.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":"14 20","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510095/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201673","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Autophagy leads to cellular tolerance of the therapeutic pressure of chemotherapeutic drugs, resulting in treatment resistance. Therefore, the effective monitoring of the autophagy status of tumors in vivo and the regulating of the autophagy level are crucial for improving the efficacy of chemotherapy. In this work, we grafted nitroxide radicals onto the surface of iron oxide nanoparticles (Fe3O4 NPs) using dendrimer polymers, yielding Fe3O4-NO· NPs that are responsive to reactive oxygen species (ROS) and possess enhanced T1 and T2 signal capabilities in a magnetic resonance imaging (MRI) measurement. The ROS in tumor cells generated by autophagy quenches the nitroxide radicals, thereby weakening the T1 signal. In contrast, Fe3O4 NPs are unaffected by intracellular ROS, leading to a stable T2 signal. By comparing the intensity ratio of T1 to T2 in Fe3O4-NO· NPs, we can evaluate the in vivo autophagy status within tumors in real time. It also revealed that Fe3O4-NO· NPs loaded with doxorubicin (Dox) and combining the autophagy inhibitor exhibited high antitumor activity in cells and tumor-bearing mice. This system, which combines real-time monitoring of tumor cell autophagy with the delivery of chemotherapeutic drugs, provides an innovative and effective strategy for tumor treatment with potential clinical application prospects.

T1/T2 比例磁共振纳米探针在化疗期间监测肿瘤自噬过程
自噬会导致细胞耐受化疗药物的治疗压力,从而产生耐药性。因此,有效监测体内肿瘤的自噬状态并调节自噬水平对提高化疗疗效至关重要。在这项研究中,我们利用树枝状聚合物将亚硝基自由基接枝到氧化铁纳米粒子(Fe3O4 NPs)表面,得到了对活性氧(ROS)有反应的Fe3O4-NO- NPs,在磁共振成像(MRI)测量中具有增强的T1和T2信号能力。肿瘤细胞自噬产生的 ROS 会淬灭亚硝基自由基,从而减弱 T1 信号。相比之下,Fe3O4 NPs 不受细胞内 ROS 的影响,从而产生稳定的 T2 信号。通过比较 Fe3O4-NO- NPs 中 T1 与 T2 的强度比,我们可以实时评估体内肿瘤的自噬状态。研究还发现,装载多柔比星(Dox)并结合自噬抑制剂的 Fe3O4-NO- NPs 在细胞和肿瘤小鼠体内表现出很高的抗肿瘤活性。该系统将肿瘤细胞自噬的实时监测与化疗药物的递送相结合,为肿瘤治疗提供了一种创新而有效的策略,具有潜在的临床应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信