{"title":"Studying the Defects in Spinel Compounds: Discovery, Formation Mechanisms, Classification, and Influence on Catalytic Properties.","authors":"Tetiana Tatarchuk","doi":"10.3390/nano14201640","DOIUrl":null,"url":null,"abstract":"<p><p>Spinel ferrites demonstrate extensive applications in different areas, like electrodes for electrochemical devices, gas sensors, catalysts, and magnetic adsorbents for environmentally important processes. However, defects in the real spinel structure can change the many physical and chemical properties of spinel ferrites. Although the number of defects in a crystal spinel lattice is small, their influence on the vast majority of physical properties could be really decisive. This review provides an overview of the structural characteristics of spinel compounds (e.g., CoFe<sub>2</sub>O<sub>4</sub>, NiFe<sub>2</sub>O<sub>4</sub>, ZnFe<sub>2</sub>O<sub>4</sub>, Fe<sub>3</sub>O<sub>4</sub>, γ-Fe<sub>2</sub>O<sub>3</sub>, Co<sub>3</sub>O<sub>4</sub>, Mn<sub>3</sub>O<sub>4</sub>, NiCo<sub>2</sub>O<sub>4</sub>, ZnCo<sub>2</sub>O<sub>4</sub>, Co<sub>2</sub>MnO<sub>4</sub>, etc.) and examines the influence of defects on their properties. Attention was paid to the classification (0D, 1D, 2D, and 3D defects), nomenclature, and the formation of point and surface defects in ferrites. An in-depth description of the defects responsible for the physicochemical properties and the methodologies employed for their determination are presented. DFT as the most common simulation approach is described in relation to modeling the point defects in spinel compounds. The significant influence of defect distribution on the magnetic interactions between cations, enhancing magnetic properties, is highlighted. The main defect-engineering strategies (direct synthesis and post-treatment) are described. An antistructural notation of active centers in spinel cobalt ferrite is presented. It is shown that the introduction of cations with different charges (e.g., Cu(I), Mn(II), Ce(III), or Ce(IV)) into the cobalt ferrite spinel matrix results in the formation of various point defects. The ability to predict the type of defects and their impact on material properties is the basis of defect engineering, which is currently an extremely promising direction in modern materials science.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510202/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201640","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinel ferrites demonstrate extensive applications in different areas, like electrodes for electrochemical devices, gas sensors, catalysts, and magnetic adsorbents for environmentally important processes. However, defects in the real spinel structure can change the many physical and chemical properties of spinel ferrites. Although the number of defects in a crystal spinel lattice is small, their influence on the vast majority of physical properties could be really decisive. This review provides an overview of the structural characteristics of spinel compounds (e.g., CoFe2O4, NiFe2O4, ZnFe2O4, Fe3O4, γ-Fe2O3, Co3O4, Mn3O4, NiCo2O4, ZnCo2O4, Co2MnO4, etc.) and examines the influence of defects on their properties. Attention was paid to the classification (0D, 1D, 2D, and 3D defects), nomenclature, and the formation of point and surface defects in ferrites. An in-depth description of the defects responsible for the physicochemical properties and the methodologies employed for their determination are presented. DFT as the most common simulation approach is described in relation to modeling the point defects in spinel compounds. The significant influence of defect distribution on the magnetic interactions between cations, enhancing magnetic properties, is highlighted. The main defect-engineering strategies (direct synthesis and post-treatment) are described. An antistructural notation of active centers in spinel cobalt ferrite is presented. It is shown that the introduction of cations with different charges (e.g., Cu(I), Mn(II), Ce(III), or Ce(IV)) into the cobalt ferrite spinel matrix results in the formation of various point defects. The ability to predict the type of defects and their impact on material properties is the basis of defect engineering, which is currently an extremely promising direction in modern materials science.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.