Arjun Pitchai, Akshada Shinde, Jenna N Swihart, Kiley Robison, Jonathan H Shannahan
{"title":"Specialized Pro-Resolving Lipid Mediators Distinctly Modulate Silver Nanoparticle-Induced Pulmonary Inflammation in Healthy and Metabolic Syndrome Mouse Models.","authors":"Arjun Pitchai, Akshada Shinde, Jenna N Swihart, Kiley Robison, Jonathan H Shannahan","doi":"10.3390/nano14201642","DOIUrl":null,"url":null,"abstract":"<p><p>Individuals with chronic diseases are more vulnerable to environmental inhalation exposures. Although metabolic syndrome (MetS) is increasingly common and is associated with susceptibility to inhalation exposures such as particulate air pollution, the underlying mechanisms remain unclear. In previous studies, we determined that, compared to a healthy mouse model, a mouse model of MetS exhibited increased pulmonary inflammation 24 h after exposure to AgNPs. This exacerbated response was associated with decreases in pulmonary levels of specific specialized pro-resolving mediators (SPMs). Supplementation with specific SPMs that are known to be dysregulated in MetS may alter particulate-induced inflammatory responses and be useful in treatment strategies. Our current study hypothesized that administration of resolvin E1 (RvE1), protectin D1 (PD1), or maresin (MaR1) following AgNP exposure will differentially regulate inflammatory responses. To examine this hypothesis, healthy and MetS mouse models were exposed to either a vehicle (control) or 50 μg of 20 nm AgNPs via oropharyngeal aspiration. They were then treated 24 h post-exposure with either a vehicle (control) or 400 ng of RvE1, PD1, or MaR1 via oropharyngeal aspiration. Endpoints of pulmonary inflammation and toxicity were evaluated three days following AgNP exposure. MetS mice that were exposed to AgNPs and received PBS treatment exhibited significantly exacerbated pulmonary inflammatory responses compared to healthy mice. In mice exposed to AgNPs and treated with RvE1, neutrophil infiltration was reduced in healthy mice and the exacerbated neutrophil levels were decreased in the MetS model. This decreased neutrophilia was associated with decreases in proinflammatory cytokines' gene and protein expression. Healthy mice treated with PD1 did not demonstrate alterations in AgNP-induced neutrophil levels compared to mice not receiving treat; however, exacerbated neutrophilia was reduced in the MetS model. These PD1 alterations were associated with decreases in proinflammatory cytokines, as well as elevated interleukin-10 (IL-10). Both mouse models receiving MaR1 treatment demonstrated reductions in AgNP-induced neutrophil influx. MaR1 treatment was associated with decreases in proinflammatory cytokines in both models and increases in the resolution inflammatory cytokine IL-10 in both models, which were enhanced in MetS mice. Inflammatory responses to particulate exposure may be treated using specific SPMs, some of which may benefit susceptible subpopulations.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510677/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201642","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Individuals with chronic diseases are more vulnerable to environmental inhalation exposures. Although metabolic syndrome (MetS) is increasingly common and is associated with susceptibility to inhalation exposures such as particulate air pollution, the underlying mechanisms remain unclear. In previous studies, we determined that, compared to a healthy mouse model, a mouse model of MetS exhibited increased pulmonary inflammation 24 h after exposure to AgNPs. This exacerbated response was associated with decreases in pulmonary levels of specific specialized pro-resolving mediators (SPMs). Supplementation with specific SPMs that are known to be dysregulated in MetS may alter particulate-induced inflammatory responses and be useful in treatment strategies. Our current study hypothesized that administration of resolvin E1 (RvE1), protectin D1 (PD1), or maresin (MaR1) following AgNP exposure will differentially regulate inflammatory responses. To examine this hypothesis, healthy and MetS mouse models were exposed to either a vehicle (control) or 50 μg of 20 nm AgNPs via oropharyngeal aspiration. They were then treated 24 h post-exposure with either a vehicle (control) or 400 ng of RvE1, PD1, or MaR1 via oropharyngeal aspiration. Endpoints of pulmonary inflammation and toxicity were evaluated three days following AgNP exposure. MetS mice that were exposed to AgNPs and received PBS treatment exhibited significantly exacerbated pulmonary inflammatory responses compared to healthy mice. In mice exposed to AgNPs and treated with RvE1, neutrophil infiltration was reduced in healthy mice and the exacerbated neutrophil levels were decreased in the MetS model. This decreased neutrophilia was associated with decreases in proinflammatory cytokines' gene and protein expression. Healthy mice treated with PD1 did not demonstrate alterations in AgNP-induced neutrophil levels compared to mice not receiving treat; however, exacerbated neutrophilia was reduced in the MetS model. These PD1 alterations were associated with decreases in proinflammatory cytokines, as well as elevated interleukin-10 (IL-10). Both mouse models receiving MaR1 treatment demonstrated reductions in AgNP-induced neutrophil influx. MaR1 treatment was associated with decreases in proinflammatory cytokines in both models and increases in the resolution inflammatory cytokine IL-10 in both models, which were enhanced in MetS mice. Inflammatory responses to particulate exposure may be treated using specific SPMs, some of which may benefit susceptible subpopulations.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.