Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-10 DOI:10.3390/nano14201618
Furkan Eker, Hatice Duman, Emir Akdaşçi, Anna Maria Witkowska, Mikhael Bechelany, Sercan Karav
{"title":"Silver Nanoparticles in Therapeutics and Beyond: A Review of Mechanism Insights and Applications.","authors":"Furkan Eker, Hatice Duman, Emir Akdaşçi, Anna Maria Witkowska, Mikhael Bechelany, Sercan Karav","doi":"10.3390/nano14201618","DOIUrl":null,"url":null,"abstract":"<p><p>Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510578/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201618","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silver nanoparticles (NPs) have become highly promising agents in the field of biomedical science, offering wide therapeutic potential due to their unique physicochemical properties. The unique characteristics of silver NPs, such as their higher surface-area-to-volume ratio, make them ideal for a variety of biological applications. They are easily processed thanks to their large surface area, strong surface plasmon resonance (SPR), stable nature, and multifunctionality. With an emphasis on the mechanisms of action, efficacy, and prospective advantages of silver NPs, this review attempts to give a thorough overview of the numerous biological applications of these particles. The utilization of silver NPs in diagnostics, such as bioimaging and biosensing, as well as their functions in therapeutic interventions such as antimicrobial therapies, cancer therapy, diabetes treatment, bone repair, and wound healing, are investigated. The underlying processes by which silver NPs exercise their effects, such as oxidative stress induction, apoptosis, and microbial cell membrane rupture, are explored. Furthermore, toxicological concerns and regulatory issues are discussed, as well as the present difficulties and restrictions related to the application of silver NPs in medicine.

银纳米粒子在治疗学及其他领域的应用:银纳米颗粒在治疗学及其他领域的应用:机制洞察与应用综述》。
银纳米粒子(NPs)因其独特的物理化学特性而具有广泛的治疗潜力,已成为生物医学领域极具前景的制剂。银纳米粒子的独特特性,如较高的表面积与体积比,使其成为各种生物应用的理想选择。由于其表面积大、表面等离子体共振(SPR)强、性质稳定且具有多功能性,因此很容易加工。本综述将重点介绍银 NPs 的作用机制、功效和潜在优势,并试图全面概述这些微粒的众多生物应用。文章探讨了银 NPs 在诊断(如生物成像和生物传感)中的应用,以及在治疗干预(如抗菌疗法、癌症治疗、糖尿病治疗、骨修复和伤口愈合)中的功能。此外,还探讨了银 NPs 发挥作用的基本过程,如氧化应激诱导、细胞凋亡和微生物细胞膜破裂。此外,还讨论了毒理学问题和监管问题,以及目前与银 NPs 医学应用有关的困难和限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信