{"title":"Honeycomb Cell Structures Formed in Drop-Casting CNT Films for Highly Efficient Solar Absorber Applications.","authors":"Saiful Islam, Hiroshi Furuta","doi":"10.3390/nano14201633","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the process of using multi-walled carbon nanotube (MWCNT) coatings to enhance lamp heating temperatures for solar thermal absorption applications. The primary focus is studying the effects of the self-organized honeycomb structures of CNTs formed on silicon substrates on different cell area ratios (CARs). The drop-casting process was used to develop honeycomb-structured MWCNT-coated absorbers with varying CAR values ranging from ~60% to 17%. The optical properties were investigated within the visible (400-800 nm) and near-infrared (934-1651 nm) wavelength ranges. Although fully coated MWCNT absorbers showed the lowest reflectance, honeycomb structures with a ~17% CAR achieved high-temperature absorption. These structures maintained 8.4% reflectance at 550 nm, but their infrared reflection dramatically increased to 80.5% at 1321 nm. The solar thermal performance was assessed throughout a range of irradiance intensities, from 0.04 W/cm<sup>2</sup> to 0.39 W/cm<sup>2</sup>. The honeycomb structure with a ~17% CAR value consistently performed better than the other structures by reaching the highest absorption temperatures (ranging from 52.5 °C to 285.5 °C) across all measured intensities. A direct correlation was observed between the reflection ratio (visible: 550 nm/infrared: 1321 nm) and the temperature absorption efficiency, where lower reflection ratios were associated with higher temperature absorption. This study highlights the significant potential for the large-scale production of cost-effective solar thermal absorbers through the application of optimized honeycomb-structured absorbers coated with MWCNTs. These contributions enhance solar energy efficiency for applications in water heating and purification, thereby promoting sustainable development.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510551/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201633","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the process of using multi-walled carbon nanotube (MWCNT) coatings to enhance lamp heating temperatures for solar thermal absorption applications. The primary focus is studying the effects of the self-organized honeycomb structures of CNTs formed on silicon substrates on different cell area ratios (CARs). The drop-casting process was used to develop honeycomb-structured MWCNT-coated absorbers with varying CAR values ranging from ~60% to 17%. The optical properties were investigated within the visible (400-800 nm) and near-infrared (934-1651 nm) wavelength ranges. Although fully coated MWCNT absorbers showed the lowest reflectance, honeycomb structures with a ~17% CAR achieved high-temperature absorption. These structures maintained 8.4% reflectance at 550 nm, but their infrared reflection dramatically increased to 80.5% at 1321 nm. The solar thermal performance was assessed throughout a range of irradiance intensities, from 0.04 W/cm2 to 0.39 W/cm2. The honeycomb structure with a ~17% CAR value consistently performed better than the other structures by reaching the highest absorption temperatures (ranging from 52.5 °C to 285.5 °C) across all measured intensities. A direct correlation was observed between the reflection ratio (visible: 550 nm/infrared: 1321 nm) and the temperature absorption efficiency, where lower reflection ratios were associated with higher temperature absorption. This study highlights the significant potential for the large-scale production of cost-effective solar thermal absorbers through the application of optimized honeycomb-structured absorbers coated with MWCNTs. These contributions enhance solar energy efficiency for applications in water heating and purification, thereby promoting sustainable development.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.