Colossal Dielectric Constant of Nanocrystalline/Amorphous Homo-Composite BaTiO3 Films Deposited via Pulsed Laser Deposition Technique.

IF 4.4 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Nanomaterials Pub Date : 2024-10-18 DOI:10.3390/nano14201677
Shinya Kondo, Taichi Murakami, Loick Pichon, Joël Leblanc-Lavoie, Takashi Teranishi, Akira Kishimoto, My Ali El Khakani
{"title":"Colossal Dielectric Constant of Nanocrystalline/Amorphous Homo-Composite BaTiO<sub>3</sub> Films Deposited via Pulsed Laser Deposition Technique.","authors":"Shinya Kondo, Taichi Murakami, Loick Pichon, Joël Leblanc-Lavoie, Takashi Teranishi, Akira Kishimoto, My Ali El Khakani","doi":"10.3390/nano14201677","DOIUrl":null,"url":null,"abstract":"<p><p>We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO<sub>3</sub> (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant (<i>ε</i><sub>r</sub>) and extremely low dielectric loss (tan <i>δ</i>). By varying the substrate deposition temperature (<i>T</i><sub>d</sub>) over a wide range (300-800 °C), we identified <i>T</i><sub>d</sub> = 550 °C as the optimal temperature for growing BTO films with an <i>ε</i><sub>r</sub> as high as ~3060 and a tan <i>δ</i> as low as 0.04 (at 20 kHz). High-resolution transmission electron microscopy revealed that the PLD-BTO films consist of BTO nanocrystals (~20-30 nm size) embedded within an otherwise amorphous BTO matrix. The impressive dielectric behavior is attributed to the combination of highly crystallized small BTO nanograins, which amplify interfacial polarization, and the surrounding amorphous matrix, which effectively isolates the nanograins from charge carrier transport. Our findings could facilitate the development of next-generation integrated dielectric devices.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11510155/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14201677","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We report the pulsed laser deposition (PLD) of nanocrystalline/amorphous homo-composite BaTiO3 (BTO) films exhibiting an unprecedented combination of a colossal dielectric constant (εr) and extremely low dielectric loss (tan δ). By varying the substrate deposition temperature (Td) over a wide range (300-800 °C), we identified Td = 550 °C as the optimal temperature for growing BTO films with an εr as high as ~3060 and a tan δ as low as 0.04 (at 20 kHz). High-resolution transmission electron microscopy revealed that the PLD-BTO films consist of BTO nanocrystals (~20-30 nm size) embedded within an otherwise amorphous BTO matrix. The impressive dielectric behavior is attributed to the combination of highly crystallized small BTO nanograins, which amplify interfacial polarization, and the surrounding amorphous matrix, which effectively isolates the nanograins from charge carrier transport. Our findings could facilitate the development of next-generation integrated dielectric devices.

通过脉冲激光沉积技术沉积的纳米晶/非晶同质复合 BaTiO3 薄膜的巨大介电常数
我们报告了脉冲激光沉积 (PLD) 纳米晶/非晶同质复合 BaTiO3(BTO)薄膜的研究结果,这种薄膜展现出前所未有的巨大介电常数(εr)和极低介电损耗(tan δ)的完美结合。通过在较大范围(300-800 °C)内改变基底沉积温度(Td),我们确定 Td = 550 °C 为生长 BTO 薄膜的最佳温度,εr 高达 ~3060,tan δ 低至 0.04(20 kHz 时)。高分辨率透射电子显微镜显示,PLD-BTO 薄膜由嵌入无定形 BTO 基体中的 BTO 纳米晶体(大小约为 20-30 纳米)组成。令人印象深刻的介电行为归因于高度结晶的小 BTO 纳米晶粒和周围的无定形基质,前者放大了界面极化,后者有效地隔离了纳米晶粒与电荷载流子的传输。我们的研究结果可促进下一代集成介电器件的开发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanomaterials
Nanomaterials NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
8.50
自引率
9.40%
发文量
3841
审稿时长
14.22 days
期刊介绍: Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信