Visualizing plant salt stress with a NaCl-responsive fluorescent probe.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Xiaoxie Ma, Xiaoyan Zeng, Yurou Huang, Sheng Hua Liu, Jun Yin, Guang-Fu Yang
{"title":"Visualizing plant salt stress with a NaCl-responsive fluorescent probe.","authors":"Xiaoxie Ma, Xiaoyan Zeng, Yurou Huang, Sheng Hua Liu, Jun Yin, Guang-Fu Yang","doi":"10.1038/s41596-024-01068-x","DOIUrl":null,"url":null,"abstract":"<p><p>Salt stress is an adverse environmental condition that harms plant growth and development. The development of salt stress probes is critical for tracking the growth dynamics of plants, molecular breeding or screening of growth regulators. The sodium chloride (NaCl)-responsive fluorescent probe Aza-CyBz is designed based on the tenet that NaCl induces formation of ordered aggregates, and the sensitive fluorescence response can enable the visualization of plant salt stress in root tip tissues and live plants. Herein, we describe a detailed three-step route for synthesis of Aza-CyBz and applications to monitoring salt stress in Arabidopsis thaliana. The procedures for operating fluorescence imaging under various stresses are also listed to eliminate interference from the oxidative mechanism of salt stress. Compared with conventional invasive approaches such as inductively coupled plasma emission spectrometry and flame photometer, our protocol can real-time monitor salt stress experienced by plants, which demands simple pretreatment procedure and staining technique. Due to near infrared fluorescence, this method provides direct visual observation of salt stress at both tissue and live plant levels, which is superior to conventional noninvasive approaches. The preparation of probe Aza-CyBz takes ~2 d, and the imaging experiments for assessing salt stress experienced by plants, including the preparation of stressed plant samples takes ~9-11 d for root tip tissues and ~23 d for live plants. Notably, acquisition and analysis visual images of salt stress in plants can be completed within 2 h and they require only a basic knowledge of spectroscopy and chemistry.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01068-x","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Salt stress is an adverse environmental condition that harms plant growth and development. The development of salt stress probes is critical for tracking the growth dynamics of plants, molecular breeding or screening of growth regulators. The sodium chloride (NaCl)-responsive fluorescent probe Aza-CyBz is designed based on the tenet that NaCl induces formation of ordered aggregates, and the sensitive fluorescence response can enable the visualization of plant salt stress in root tip tissues and live plants. Herein, we describe a detailed three-step route for synthesis of Aza-CyBz and applications to monitoring salt stress in Arabidopsis thaliana. The procedures for operating fluorescence imaging under various stresses are also listed to eliminate interference from the oxidative mechanism of salt stress. Compared with conventional invasive approaches such as inductively coupled plasma emission spectrometry and flame photometer, our protocol can real-time monitor salt stress experienced by plants, which demands simple pretreatment procedure and staining technique. Due to near infrared fluorescence, this method provides direct visual observation of salt stress at both tissue and live plant levels, which is superior to conventional noninvasive approaches. The preparation of probe Aza-CyBz takes ~2 d, and the imaging experiments for assessing salt stress experienced by plants, including the preparation of stressed plant samples takes ~9-11 d for root tip tissues and ~23 d for live plants. Notably, acquisition and analysis visual images of salt stress in plants can be completed within 2 h and they require only a basic knowledge of spectroscopy and chemistry.

利用 NaCl 响应荧光探针观察植物盐胁迫。
盐胁迫是一种危害植物生长和发育的不利环境条件。开发盐胁迫探针对于跟踪植物生长动态、分子育种或筛选生长调节剂至关重要。氯化钠(NaCl)响应型荧光探针 Aza-CyBz 是根据 NaCl 诱导有序聚集体形成的原理设计的,其灵敏的荧光响应可实现植物根尖组织和活体植物盐胁迫的可视化。在此,我们详细介绍了 Aza-CyBz 的三步合成路线以及在拟南芥盐胁迫监测中的应用。同时还列出了各种胁迫下荧光成像的操作步骤,以消除盐胁迫氧化机制的干扰。与电感耦合等离子体发射光谱和火焰光度计等传统的侵入式方法相比,我们的方案可以实时监测植物所经历的盐胁迫,对预处理程序和染色技术的要求也很简单。由于采用了近红外荧光技术,该方法可在组织和活体植物水平上直接观察盐胁迫,优于传统的非侵入式方法。探针 Aza-CyBz 的制备需要 ~2 d,而评估植物盐胁迫的成像实验,包括受胁迫植物样本的制备,根尖组织需要 ~9-11 d,活体植物需要 ~23 d。值得注意的是,植物盐胁迫视觉图像的获取和分析可在 2 小时内完成,而且只需要光谱学和化学方面的基本知识。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信