Morphometric analysis of actin networks.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
ACS Applied Electronic Materials Pub Date : 2024-12-01 Epub Date: 2024-10-23 DOI:10.1091/mbc.E24-06-0248
Oghosa H Akenuwa, Jinmo Gu, Andreas Nebenführ, Steven M Abel
{"title":"Morphometric analysis of actin networks.","authors":"Oghosa H Akenuwa, Jinmo Gu, Andreas Nebenführ, Steven M Abel","doi":"10.1091/mbc.E24-06-0248","DOIUrl":null,"url":null,"abstract":"<p><p>The organization of cytoskeletal elements is pivotal for coordinating intracellular transport in eukaryotic cells. Several quantitative measures based on image analysis have been proposed to characterize morphometric features of fluorescently labeled actin networks. While helpful in detecting differences in actin organization between treatments or genotypes, the accuracy of these measures could not be rigorously assessed due to a lack of ground-truth data to which they could be compared. To overcome this limitation, we utilized coarse-grained computer simulations of actin filaments and cross-linkers to generate synthetic actin networks with varying levels of bundling. We converted the simulated networks into pseudofluorescence images similar to images obtained using confocal microscopy. Using both published and novel analysis procedures, we extracted a series of morphometric parameters and benchmarked them against analogous measures based on the ground-truth actin configurations. Our analysis revealed a set of parameters that reliably reports on actin network density, orientation, ordering, and bundling. Application of these morphometric parameters to root epidermal cells of <i>Arabidopsis thaliana</i> revealed subtle changes in network organization between wild-type and mutant cells. This work provides robust measures that can be used to quantify features of actin networks and characterize changes in actin organization for different experimental conditions.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1091/mbc.E24-06-0248","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The organization of cytoskeletal elements is pivotal for coordinating intracellular transport in eukaryotic cells. Several quantitative measures based on image analysis have been proposed to characterize morphometric features of fluorescently labeled actin networks. While helpful in detecting differences in actin organization between treatments or genotypes, the accuracy of these measures could not be rigorously assessed due to a lack of ground-truth data to which they could be compared. To overcome this limitation, we utilized coarse-grained computer simulations of actin filaments and cross-linkers to generate synthetic actin networks with varying levels of bundling. We converted the simulated networks into pseudofluorescence images similar to images obtained using confocal microscopy. Using both published and novel analysis procedures, we extracted a series of morphometric parameters and benchmarked them against analogous measures based on the ground-truth actin configurations. Our analysis revealed a set of parameters that reliably reports on actin network density, orientation, ordering, and bundling. Application of these morphometric parameters to root epidermal cells of Arabidopsis thaliana revealed subtle changes in network organization between wild-type and mutant cells. This work provides robust measures that can be used to quantify features of actin networks and characterize changes in actin organization for different experimental conditions.

肌动蛋白网络的形态计量分析
细胞骨架元素的组织对于协调真核细胞的胞内运输至关重要。目前已提出了几种基于图像分析的定量测量方法,用于描述荧光标记肌动蛋白网络的形态特征。虽然这些方法有助于检测不同处理或基因型之间肌动蛋白组织的差异,但由于缺乏可与之比较的基本真实数据,因此无法对其准确性进行严格评估。为了克服这一局限,我们利用粗粒度的计算机模拟肌动蛋白丝和交联剂,生成具有不同捆绑水平的合成肌动蛋白网络。我们将模拟网络转换成与共聚焦显微镜获得的图像类似的伪荧光图像。利用已发表的分析程序和新颖的分析程序,我们提取了一系列形态计量参数,并将它们与基于真实肌动蛋白构型的类似测量方法进行比较。我们的分析揭示了一组能可靠报告肌动蛋白网络密度、方向、有序性和成束性的参数。将这些形态计量参数应用于拟南芥的根表皮细胞,发现了野生型细胞和突变型细胞之间网络组织的微妙变化。这项工作提供了可靠的测量方法,可用于量化肌动蛋白网络的特征,并描述不同实验条件下肌动蛋白组织的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信