Xiaolin Zhu , Tianshi Xiao , Xuchen Jia , Xuan Ni , Xiaosong Zhang , Yizhuo Fang , Zhihui Hao
{"title":"Isolation and evaluation of bacteriophage cocktail for the control of colistin-resistant Escherichia coli","authors":"Xiaolin Zhu , Tianshi Xiao , Xuchen Jia , Xuan Ni , Xiaosong Zhang , Yizhuo Fang , Zhihui Hao","doi":"10.1016/j.micpath.2024.107056","DOIUrl":null,"url":null,"abstract":"<div><div>The frequent emergence of colistin-resistant <em>E. coli</em> worldwide drives the exploration of alternative therapies, and bacteriophages (phages) have emerged as promising candidates to tackle this challenge. In this study, three <em>E. coli</em> phages were isolated, screened, and evaluated against 96 colistin-resistant strains obtained from diverse sources. The combined recognition rate for these strains was 43.6 %, while individually it ranged from 17.0 % to 24.5 %. Notably, among the tested phages (FJ3-79, SD1-92L, and FJ4-63), FJ4-63 demonstrated exceptional characteristics in regulating host population dynamics upon infection by exhibiting a shorter latent period (20 min) and a larger burst size (95.99 ± 3.61 PFU/cell). Furthermore, it exhibited relative stability at pH 3–11 and below 60 °C. Transmission electron microscopy and genomic analysis classified phage FJ4-63 belongs to the <em>Dhakavirus</em> genus within the <em>Straboviridae</em> family. Its genome comprised a linear double-stranded DNA measuring 169,669 bp (containing 272 coding sequences) with a GC content of 39.76 %, of which 93 (34.2 %) had known functions, and the remaining 177 were annotated as hypothetical proteins. Additionally, two tRNAs were recognized, possess the “holin-endolysin” lytic system, and no resistance or virulence genes were detected. The phylogenetic tree and average nucleotide identity (ANI) analysis revealed that phage FJ4-63 exhibited the highest similarity to <em>Escherichia</em> phage C6 (679410.1), indicating a consistent close relationship within the same branch. The cocktail comprising three phages exhibits enhanced in vitro bactericidal efficacy compared to a single phage. At high doses with MOI = 100, it rapidly and completely eradicates bacteria within 1 h while significantly reducing bacterial biofilms. All this evidence suggests that lytic phages offer an effective solution for clinical treatment, with a phage cocktail demonstrating greater potential in the alternative management of colistin-resistant <em>E. coli</em> infections.</div></div>","PeriodicalId":18599,"journal":{"name":"Microbial pathogenesis","volume":"197 ","pages":"Article 107056"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial pathogenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0882401024005230","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The frequent emergence of colistin-resistant E. coli worldwide drives the exploration of alternative therapies, and bacteriophages (phages) have emerged as promising candidates to tackle this challenge. In this study, three E. coli phages were isolated, screened, and evaluated against 96 colistin-resistant strains obtained from diverse sources. The combined recognition rate for these strains was 43.6 %, while individually it ranged from 17.0 % to 24.5 %. Notably, among the tested phages (FJ3-79, SD1-92L, and FJ4-63), FJ4-63 demonstrated exceptional characteristics in regulating host population dynamics upon infection by exhibiting a shorter latent period (20 min) and a larger burst size (95.99 ± 3.61 PFU/cell). Furthermore, it exhibited relative stability at pH 3–11 and below 60 °C. Transmission electron microscopy and genomic analysis classified phage FJ4-63 belongs to the Dhakavirus genus within the Straboviridae family. Its genome comprised a linear double-stranded DNA measuring 169,669 bp (containing 272 coding sequences) with a GC content of 39.76 %, of which 93 (34.2 %) had known functions, and the remaining 177 were annotated as hypothetical proteins. Additionally, two tRNAs were recognized, possess the “holin-endolysin” lytic system, and no resistance or virulence genes were detected. The phylogenetic tree and average nucleotide identity (ANI) analysis revealed that phage FJ4-63 exhibited the highest similarity to Escherichia phage C6 (679410.1), indicating a consistent close relationship within the same branch. The cocktail comprising three phages exhibits enhanced in vitro bactericidal efficacy compared to a single phage. At high doses with MOI = 100, it rapidly and completely eradicates bacteria within 1 h while significantly reducing bacterial biofilms. All this evidence suggests that lytic phages offer an effective solution for clinical treatment, with a phage cocktail demonstrating greater potential in the alternative management of colistin-resistant E. coli infections.
期刊介绍:
Microbial Pathogenesis publishes original contributions and reviews about the molecular and cellular mechanisms of infectious diseases. It covers microbiology, host-pathogen interaction and immunology related to infectious agents, including bacteria, fungi, viruses and protozoa. It also accepts papers in the field of clinical microbiology, with the exception of case reports.
Research Areas Include:
-Pathogenesis
-Virulence factors
-Host susceptibility or resistance
-Immune mechanisms
-Identification, cloning and sequencing of relevant genes
-Genetic studies
-Viruses, prokaryotic organisms and protozoa
-Microbiota
-Systems biology related to infectious diseases
-Targets for vaccine design (pre-clinical studies)