{"title":"Image-Based Auto-Focus Microscope System with Visual Servo Control for Micro-Stereolithography.","authors":"Yijie Liu, Xuexuan Li, Pengfei Jiang, Ziyue Wang, Jichang Guo, Chao Luo, Yaozhong Wei, Zhiliang Chen, Chang Liu, Wang Ren, Wei Zhang, Juntian Qu, Zhen Zhang","doi":"10.3390/mi15101250","DOIUrl":null,"url":null,"abstract":"<p><p>Micro-stereolithography (μSL) is an advanced additive manufacturing technique that enables the fabrication of highly precise microstructures with fine feature resolution. One of the primary challenges in μSL is achieving and maintaining precise focus throughout the fabrication process. For the successful application of μSL, it is essential to maintain the sample surface within a focal depth of several microns. Despite the growing interest in auto-focus devices, limited attention has been directed towards auto-focus systems in image-based auto-focus microscope systems for precision μSL. To address this challenge, we propose an image-based auto-focus microscope system incorporating visual servo control. In the optical design, a transflective beam splitter is employed, allowing the laser beam to pass through for fabrication while reflecting the focused beam on the sample surface to the microscope and camera. Utilizing captured spot images and the Foucault knife-edge test, a deep learning-based laser spot image processing algorithm is developed to determine the focus position based on spot size and the number of spot pixels on both sides. Experimental results demonstrate that the proposed auto-focus system effectively determines the relative position of the focal point using the laser spot image and achieves auto-focusing through visual servo control.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509336/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101250","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Micro-stereolithography (μSL) is an advanced additive manufacturing technique that enables the fabrication of highly precise microstructures with fine feature resolution. One of the primary challenges in μSL is achieving and maintaining precise focus throughout the fabrication process. For the successful application of μSL, it is essential to maintain the sample surface within a focal depth of several microns. Despite the growing interest in auto-focus devices, limited attention has been directed towards auto-focus systems in image-based auto-focus microscope systems for precision μSL. To address this challenge, we propose an image-based auto-focus microscope system incorporating visual servo control. In the optical design, a transflective beam splitter is employed, allowing the laser beam to pass through for fabrication while reflecting the focused beam on the sample surface to the microscope and camera. Utilizing captured spot images and the Foucault knife-edge test, a deep learning-based laser spot image processing algorithm is developed to determine the focus position based on spot size and the number of spot pixels on both sides. Experimental results demonstrate that the proposed auto-focus system effectively determines the relative position of the focal point using the laser spot image and achieves auto-focusing through visual servo control.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.