{"title":"Automated Fabrication of Smart Strain Sensing Threads.","authors":"Ege Ozgul, Wenxin Zeng, Sameer Sonkusale","doi":"10.3390/mi15101239","DOIUrl":null,"url":null,"abstract":"<p><p>With favorable properties of stretchability, stitchability, and potential to be woven into a fabric, thread-based sensors have gained considerable interest for wearable devices for smart and connected health applications. To facilitate wearable applications, an easy and reliable way to fabricate these thread-based sensors with good performance and consistency is the key while manufacturing these smart threads. In this paper, we propose an automated thread-coating system that can fabricate thread-based strain sensors with controlled parameters. The platform uses integrated sensors for controlled manufacturing of the threads in a highly compact structure that consists of an innovative tension sensor and a closed-loop thermal management system. Using this new system, a sample thread with a gauge factor of 1.47 and tension sensitivity of 32.64 KΩ/N is prepared. Compared with hand-coated thread, the machine-fabricated thread shows much better sensitivity and consistency. The prepared strain sensor is made into a respiration sensor patch and a limb motion patch to demonstrate its application.</p>","PeriodicalId":18508,"journal":{"name":"Micromachines","volume":"15 10","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509538/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micromachines","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/mi15101239","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With favorable properties of stretchability, stitchability, and potential to be woven into a fabric, thread-based sensors have gained considerable interest for wearable devices for smart and connected health applications. To facilitate wearable applications, an easy and reliable way to fabricate these thread-based sensors with good performance and consistency is the key while manufacturing these smart threads. In this paper, we propose an automated thread-coating system that can fabricate thread-based strain sensors with controlled parameters. The platform uses integrated sensors for controlled manufacturing of the threads in a highly compact structure that consists of an innovative tension sensor and a closed-loop thermal management system. Using this new system, a sample thread with a gauge factor of 1.47 and tension sensitivity of 32.64 KΩ/N is prepared. Compared with hand-coated thread, the machine-fabricated thread shows much better sensitivity and consistency. The prepared strain sensor is made into a respiration sensor patch and a limb motion patch to demonstrate its application.
期刊介绍:
Micromachines (ISSN 2072-666X) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to micro-scaled machines and micromachinery. It publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.