Annie J Harwood-Stamper, Caroline A Rowland, Warwick B Dunn
{"title":"Development of microflow ultra high performance liquid chromatography-mass spectrometry metabolomic assays for analysis of mammalian biofluids.","authors":"Annie J Harwood-Stamper, Caroline A Rowland, Warwick B Dunn","doi":"10.1007/s11306-024-02187-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction and objectives: </strong>The application of untargeted metabolomics assays using ultra high performance liquid chromatography-mass spectrometry (UHPLC-MS) to study metabolism in biological systems including humans is rapidly increasing. In some of these studies there is a requirement to collect and analyse low sample volumes of biofluids (e.g. tear fluid) or low cell and tissue mass samples (e.g. tissue needle biopsies). The application of microflow, capillary or nano liquid chromatography (≤ 1.0 mm column internal diameter (i.d.)) theoretically should accomplish a higher assay sensitivity compared to analytical liquid chromatography (2.1-5.0 mm column internal diameter). To date, there has been limited research into microflow UHPLC-MS assays that can be applied to study samples of low volume or mass.</p><p><strong>Methods: </strong>This paper presents three complementary UHPLC-MS assays (aqueous C<sub>18</sub> reversed-phase, lipidomics C<sub>18</sub> reversed-phase and Hydrophilic Interaction Liquid Chromatography (HILIC)) applying 1.0 mm internal diameter columns for untargeted metabolomics. Human plasma and urine samples were applied for the method development, with porcine plasma, urine and tear fluid used for method assessment. Data were collected and compared for columns of the same length, stationary phase and stationary phase particle size but with two different column internal diameters (2.1 mm and 1.0 mm).</p><p><strong>Results and conclusions: </strong>All three assays showed an increase in peak areas and peak widths when applying the 1.0 mm i.d. assays. HILIC assays provide an advantage at lower sample dilutions whereas for reversed phase (RP) assays there was no benefit added. This can be seen in the validation study where a much higher number of compounds were detected in the HILIC assay. RP assays were still appropriate for small volume samples with hundreds of compounds being detected. In summary, the 1.0 mm i.d. column assays are applicable for small volume samples where dilution is required during sample preparation.</p>","PeriodicalId":18506,"journal":{"name":"Metabolomics","volume":"20 6","pages":"120"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511728/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11306-024-02187-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction and objectives: The application of untargeted metabolomics assays using ultra high performance liquid chromatography-mass spectrometry (UHPLC-MS) to study metabolism in biological systems including humans is rapidly increasing. In some of these studies there is a requirement to collect and analyse low sample volumes of biofluids (e.g. tear fluid) or low cell and tissue mass samples (e.g. tissue needle biopsies). The application of microflow, capillary or nano liquid chromatography (≤ 1.0 mm column internal diameter (i.d.)) theoretically should accomplish a higher assay sensitivity compared to analytical liquid chromatography (2.1-5.0 mm column internal diameter). To date, there has been limited research into microflow UHPLC-MS assays that can be applied to study samples of low volume or mass.
Methods: This paper presents three complementary UHPLC-MS assays (aqueous C18 reversed-phase, lipidomics C18 reversed-phase and Hydrophilic Interaction Liquid Chromatography (HILIC)) applying 1.0 mm internal diameter columns for untargeted metabolomics. Human plasma and urine samples were applied for the method development, with porcine plasma, urine and tear fluid used for method assessment. Data were collected and compared for columns of the same length, stationary phase and stationary phase particle size but with two different column internal diameters (2.1 mm and 1.0 mm).
Results and conclusions: All three assays showed an increase in peak areas and peak widths when applying the 1.0 mm i.d. assays. HILIC assays provide an advantage at lower sample dilutions whereas for reversed phase (RP) assays there was no benefit added. This can be seen in the validation study where a much higher number of compounds were detected in the HILIC assay. RP assays were still appropriate for small volume samples with hundreds of compounds being detected. In summary, the 1.0 mm i.d. column assays are applicable for small volume samples where dilution is required during sample preparation.
期刊介绍:
Metabolomics publishes current research regarding the development of technology platforms for metabolomics. This includes, but is not limited to:
metabolomic applications within man, including pre-clinical and clinical
pharmacometabolomics for precision medicine
metabolic profiling and fingerprinting
metabolite target analysis
metabolomic applications within animals, plants and microbes
transcriptomics and proteomics in systems biology
Metabolomics is an indispensable platform for researchers using new post-genomics approaches, to discover networks and interactions between metabolites, pharmaceuticals, SNPs, proteins and more. Its articles go beyond the genome and metabolome, by including original clinical study material together with big data from new emerging technologies.