Mehdi Esfandyari-Manesh, Bahar Morshedi, Parisa Joolaie, Rassoul Dinarvand
{"title":"Self-assembled nanoparticles of alginate and paclitaxel-triphenylphosphonium for mitochondrial apoptosis targeting.","authors":"Mehdi Esfandyari-Manesh, Bahar Morshedi, Parisa Joolaie, Rassoul Dinarvand","doi":"10.1007/s12032-024-02540-0","DOIUrl":null,"url":null,"abstract":"<p><p>Paclitaxel (PTX), an antimitotic drug from the taxanes group, prevents the proliferation of breast cancer cells through mitosis arrest and activation by a cascade of signaling pathways that lead to apoptosis. Mitochondria is one of the important signaling routes for inducing apoptosis. For mitochondria targeting, triphenylphosphonium (TPP) with a delocalized charge and hydrophobic nature was utilized as a moiety to facilitate penetration through a phospholipid membrane of mitochondria. PTX-TPP was synthesized via pH-sensitive ester bond between hydroxyl groups of PTX and carboxylic acid of (4-carboxybutyl) TPP. Then PTX-TPP prodrug encapsulated in alginate nanoparticles, which were self-assembled by the ionotropic complexation technique for enhancement of mitochondrial apoptosis in breast cancer cells. The loading of PTX-TPP conjugation in self-assembled alginate nanoparticles was 16.5% and the particle size of nanoparticles was 123 nm with zeta potential around - 25.8 Mv. The in vitro cytotoxicity and IC50 of PTX-TPP nanoparticles in the growth of MCF7 cancer cell increased 6.3-fold higher than free PTX. The early apoptotic cells and the late apoptotic/necrotic cells for PTX-TPP nanoparticles were 11.6 and 3.9-fold higher than free PTX. This study indicated this mitochondrial-targeted self-assembled nanoparticles can inhibit the tumor cell growth of breast cancer.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-024-02540-0","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Paclitaxel (PTX), an antimitotic drug from the taxanes group, prevents the proliferation of breast cancer cells through mitosis arrest and activation by a cascade of signaling pathways that lead to apoptosis. Mitochondria is one of the important signaling routes for inducing apoptosis. For mitochondria targeting, triphenylphosphonium (TPP) with a delocalized charge and hydrophobic nature was utilized as a moiety to facilitate penetration through a phospholipid membrane of mitochondria. PTX-TPP was synthesized via pH-sensitive ester bond between hydroxyl groups of PTX and carboxylic acid of (4-carboxybutyl) TPP. Then PTX-TPP prodrug encapsulated in alginate nanoparticles, which were self-assembled by the ionotropic complexation technique for enhancement of mitochondrial apoptosis in breast cancer cells. The loading of PTX-TPP conjugation in self-assembled alginate nanoparticles was 16.5% and the particle size of nanoparticles was 123 nm with zeta potential around - 25.8 Mv. The in vitro cytotoxicity and IC50 of PTX-TPP nanoparticles in the growth of MCF7 cancer cell increased 6.3-fold higher than free PTX. The early apoptotic cells and the late apoptotic/necrotic cells for PTX-TPP nanoparticles were 11.6 and 3.9-fold higher than free PTX. This study indicated this mitochondrial-targeted self-assembled nanoparticles can inhibit the tumor cell growth of breast cancer.
期刊介绍:
Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.