Total Synthesis of Talarolide A and atrop-Talarolide A: Hydroxamate H-Bond Bridge Stabilization of Cyclic Peptide Conformers Invokes Non-Canonical Atropisomerism.
Waleed M Hussein, Yuxuan Zhu, Angela A Salim, Robert J Capon
{"title":"Total Synthesis of Talarolide A and <i>atrop</i>-Talarolide A: Hydroxamate H-Bond Bridge Stabilization of Cyclic Peptide Conformers Invokes Non-Canonical Atropisomerism.","authors":"Waleed M Hussein, Yuxuan Zhu, Angela A Salim, Robert J Capon","doi":"10.3390/md22100454","DOIUrl":null,"url":null,"abstract":"<p><p>The first total synthesis of the Australian marine tunicate fungus-derived cyclic peptide talarolide A (<b>1</b>) has confirmed the structure previously proposed on the basis of spectroscopic and chemical analyses and re-affirmed the importance of the unique hydroxamate H-bond bridge in ring conformer stabilization. The unexpected co-synthesis of <i>atrop</i>-talarolide A (<b>8</b>) revealed, for the first time, that hydroxamate H-bond bridging in the talarolide framework invokes non-canonical atropisomerism and that talarolides A (<b>1</b>), C (<b>3</b>), and D (<b>4</b>) all exist naturally as atropisomers. These discoveries raise the intriguing prospect that comparable functionalisation of other cyclic peptides, including those with commercial value, could provide ready access to new \"unnatural atropisomeric\" chemical space, with new and/or improved chemical and biological properties.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509828/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22100454","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The first total synthesis of the Australian marine tunicate fungus-derived cyclic peptide talarolide A (1) has confirmed the structure previously proposed on the basis of spectroscopic and chemical analyses and re-affirmed the importance of the unique hydroxamate H-bond bridge in ring conformer stabilization. The unexpected co-synthesis of atrop-talarolide A (8) revealed, for the first time, that hydroxamate H-bond bridging in the talarolide framework invokes non-canonical atropisomerism and that talarolides A (1), C (3), and D (4) all exist naturally as atropisomers. These discoveries raise the intriguing prospect that comparable functionalisation of other cyclic peptides, including those with commercial value, could provide ready access to new "unnatural atropisomeric" chemical space, with new and/or improved chemical and biological properties.
Talarolide A 和 atrop-Talarolide A 的全合成:羟基氨基甲酸酯 H 键桥稳定环肽构象引发非规范异构。
首次全合成源自澳大利亚海洋鳞茎真菌的环肽 talarolide A (1)证实了之前根据光谱和化学分析提出的结构,并再次证实了独特的羟氨酸盐 H 键桥在环构象稳定中的重要性。阿托品-他拉罗内酯 A (8) 的意外共合成首次揭示了他拉罗内酯框架中的羟基氨基甲酸酯 H 键桥引发了非规范的阿托品异构现象,而且他拉罗内酯 A (1)、C (3) 和 D (4) 都以阿托品异构体的形式天然存在。这些发现带来了一个引人入胜的前景,即对其他环肽(包括那些具有商业价值的环肽)进行类似的功能化处理,就可以获得新的 "非天然异构体 "化学空间,并具有新的和(或)改进的化学和生物特性。
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.