Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration.

IF 4.9 2区 医学 Q1 CHEMISTRY, MEDICINAL
Marine Drugs Pub Date : 2024-09-26 DOI:10.3390/md22100437
Seong-Yeong Heo, Tae-Hee Kim, Se-Chang Kim, Gun-Woo Oh, Soo-Jin Heo, Won-Kyo Jung
{"title":"Therapeutic Effect of Decellularized Extracellular Matrix from Fish Skin for Accelerating Skin Regeneration.","authors":"Seong-Yeong Heo, Tae-Hee Kim, Se-Chang Kim, Gun-Woo Oh, Soo-Jin Heo, Won-Kyo Jung","doi":"10.3390/md22100437","DOIUrl":null,"url":null,"abstract":"<p><p>A cellular matrix derived from natural tissue functions as a highly biocompatible and versatile material for wound healing application. It provides a complex and highly organized environment with biological molecules and physical stimuli. Recently, various kinds of tissue/organ decellularized extracellular matrixes (dECMs) from bovine and porcine have been used as biomedical applications to support tissue regeneration but inherit religious restrictions and the risk of disease transmission to humans. Marine fish-derived dECMs are seen as attractive alternatives due to their similarity to mammalian physiology, reduced biological risks, and fewer religious restrictions. The aim of this study was to derive a decellularized matrix from the olive flounder (<i>Paralichthys olivaceus</i>) skin and evaluate its suitability as a wound healing application. Olive flounder skin was treated with a series of chemical treatments to remove cellular components. Decellularized fish skin (dFS) was confirmed to be successful in decellularization by evaluating the DNA content (2.84%). The dFS was characterized and evaluated in vivo to assess its biological activities. The mouse wound defect model was used to evaluate the in vivo performance of the dFS compared with that of the decellularized porcine skin (dPS). The resultant dFS was shown to enhance wound healing compared with the no-treatment group and dPS. This study suggests that dFS has potential for skin regeneration application.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509389/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22100437","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

A cellular matrix derived from natural tissue functions as a highly biocompatible and versatile material for wound healing application. It provides a complex and highly organized environment with biological molecules and physical stimuli. Recently, various kinds of tissue/organ decellularized extracellular matrixes (dECMs) from bovine and porcine have been used as biomedical applications to support tissue regeneration but inherit religious restrictions and the risk of disease transmission to humans. Marine fish-derived dECMs are seen as attractive alternatives due to their similarity to mammalian physiology, reduced biological risks, and fewer religious restrictions. The aim of this study was to derive a decellularized matrix from the olive flounder (Paralichthys olivaceus) skin and evaluate its suitability as a wound healing application. Olive flounder skin was treated with a series of chemical treatments to remove cellular components. Decellularized fish skin (dFS) was confirmed to be successful in decellularization by evaluating the DNA content (2.84%). The dFS was characterized and evaluated in vivo to assess its biological activities. The mouse wound defect model was used to evaluate the in vivo performance of the dFS compared with that of the decellularized porcine skin (dPS). The resultant dFS was shown to enhance wound healing compared with the no-treatment group and dPS. This study suggests that dFS has potential for skin regeneration application.

鱼皮脱细胞外基质对加速皮肤再生的治疗作用
从天然组织中提取的细胞基质是一种具有高度生物相容性的多功能材料,可用于伤口愈合。它为生物分子和物理刺激提供了一个复杂且高度组织化的环境。最近,来自牛和猪的各种组织/器官脱细胞细胞外基质(dECMs)已被用于生物医学应用,以支持组织再生,但其继承了宗教限制和向人类传播疾病的风险。海洋鱼类提取的 dECM 因其与哺乳动物生理结构相似、生物风险较低、宗教限制较少而被视为具有吸引力的替代品。本研究旨在从橄榄鲽(Paralichthys olivaceus)皮肤中提取脱细胞基质,并评估其作为伤口愈合应用的适宜性。橄榄鲽鱼皮经过一系列化学处理以去除细胞成分。通过评估 DNA 含量(2.84%),确认脱细胞鱼皮(dFS)脱细胞成功。对脱细胞鱼皮进行了特征描述和体内评估,以评估其生物活性。小鼠伤口缺损模型用于评估 dFS 与脱细胞猪皮(dPS)的体内性能比较。结果表明,与未处理组和 dPS 相比,dFS 能促进伤口愈合。这项研究表明,dFS 具有皮肤再生应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Marine Drugs
Marine Drugs 医学-医药化学
CiteScore
9.60
自引率
14.80%
发文量
671
审稿时长
1 months
期刊介绍: Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信