Maha Sinane, Colin Grunberger, Lucile Gentile, Céline Moriou, Victorien Chaker, Pierre Coutrot, Alain Guenneguez, Marie-Aude Poullaouec, Solène Connan, Valérie Stiger-Pouvreau, Mayalen Zubia, Yannick Fleury, Stéphane Cérantola, Nelly Kervarec, Ali Al-Mourabit, Sylvain Petek, Cécile Voisset
{"title":"Potential of Marine Sponge Metabolites against Prions: Bromotyrosine Derivatives, a Family of Interest.","authors":"Maha Sinane, Colin Grunberger, Lucile Gentile, Céline Moriou, Victorien Chaker, Pierre Coutrot, Alain Guenneguez, Marie-Aude Poullaouec, Solène Connan, Valérie Stiger-Pouvreau, Mayalen Zubia, Yannick Fleury, Stéphane Cérantola, Nelly Kervarec, Ali Al-Mourabit, Sylvain Petek, Cécile Voisset","doi":"10.3390/md22100456","DOIUrl":null,"url":null,"abstract":"<p><p>The screening of 166 extracts from tropical marine organisms (invertebrates, macroalgae) and 3 cyclolipopeptides from microorganisms against yeast prions highlighted the potential of Verongiida sponges to prevent the propagation of prions. We isolated the known compounds purealidin Q (<b>1</b>), aplysamine-2 (<b>2</b>), pseudoceratinine A (<b>3</b>), aerophobin-2 (<b>4</b>), aplysamine-1 (<b>5</b>), and pseudoceratinine B (<b>6</b>) for the first time from the Wallisian sponge <i>Suberea laboutei</i>. We then tested compounds <b>1</b>-<b>6</b> and sixteen other bromotyrosine and bromophenol derivatives previously isolated from Verongiida sponges against yeast prions, demonstrating the potential of <b>1</b>-<b>3</b>, <b>5</b>, <b>6</b>, aplyzanzine C (<b>7</b>), purealidin A (<b>10</b>), psammaplysenes D (<b>11</b>) and F (<b>12</b>), anomoian F (<b>14</b>), and N,N-dimethyldibromotyramine (<b>15</b>). Following biological tests on mammalian cells, we report here the identification of the hitherto unknown ability of the six bromotyrosine derivatives <b>1</b>, <b>2</b>, <b>5</b>, <b>7</b>, <b>11</b>, and <b>14</b> of marine origin to reduce the spread of the PrP<sup>Sc</sup> prion and the ability of compounds <b>1</b> and <b>2</b> to reduce endoplasmic reticulum stress. These two biological activities of these bromotyrosine derivatives are, to our knowledge, described here for the first time, offering a new therapeutic perspective for patients suffering from prion diseases that are presently untreatable and consequently fatal.</p>","PeriodicalId":18222,"journal":{"name":"Marine Drugs","volume":"22 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509309/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Drugs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/md22100456","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The screening of 166 extracts from tropical marine organisms (invertebrates, macroalgae) and 3 cyclolipopeptides from microorganisms against yeast prions highlighted the potential of Verongiida sponges to prevent the propagation of prions. We isolated the known compounds purealidin Q (1), aplysamine-2 (2), pseudoceratinine A (3), aerophobin-2 (4), aplysamine-1 (5), and pseudoceratinine B (6) for the first time from the Wallisian sponge Suberea laboutei. We then tested compounds 1-6 and sixteen other bromotyrosine and bromophenol derivatives previously isolated from Verongiida sponges against yeast prions, demonstrating the potential of 1-3, 5, 6, aplyzanzine C (7), purealidin A (10), psammaplysenes D (11) and F (12), anomoian F (14), and N,N-dimethyldibromotyramine (15). Following biological tests on mammalian cells, we report here the identification of the hitherto unknown ability of the six bromotyrosine derivatives 1, 2, 5, 7, 11, and 14 of marine origin to reduce the spread of the PrPSc prion and the ability of compounds 1 and 2 to reduce endoplasmic reticulum stress. These two biological activities of these bromotyrosine derivatives are, to our knowledge, described here for the first time, offering a new therapeutic perspective for patients suffering from prion diseases that are presently untreatable and consequently fatal.
期刊介绍:
Marine Drugs (ISSN 1660-3397) publishes reviews, regular research papers and short notes on the research, development and production of drugs from the sea. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible, particularly synthetic procedures and characterization information for bioactive compounds. There is no restriction on the length of the experimental section.