Whole-exome profiles of inflammatory breast cancer and pathological response to neoadjuvant chemotherapy.

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
François Bertucci, Arnaud Guille, Florence Lerebours, Michele Ceccarelli, Najeeb Syed, José Adélaïde, Pascal Finetti, Naoto T Ueno, Steven Van Laere, Patrice Viens, Alexandre De Nonneville, Anthony Goncalves, Daniel Birnbaum, Céline Callens, Davide Bedognetti, Emilie Mamessier
{"title":"Whole-exome profiles of inflammatory breast cancer and pathological response to neoadjuvant chemotherapy.","authors":"François Bertucci, Arnaud Guille, Florence Lerebours, Michele Ceccarelli, Najeeb Syed, José Adélaïde, Pascal Finetti, Naoto T Ueno, Steven Van Laere, Patrice Viens, Alexandre De Nonneville, Anthony Goncalves, Daniel Birnbaum, Céline Callens, Davide Bedognetti, Emilie Mamessier","doi":"10.1186/s12967-024-05790-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neoadjuvant chemotherapy (NACT) became a standard treatment strategy for patients with inflammatory breast cancer (IBC) because of high disease aggressiveness. However, given the heterogeneity of IBC, no molecular feature reliably predicts the response to chemotherapy. Whole-exome sequencing (WES) of clinical tumor samples provides an opportunity to identify genomic alterations associated with chemosensitivity.</p><p><strong>Methods: </strong>We retrospectively applied WES to 44 untreated IBC primary tumor samples and matched normal DNA. The pathological response to NACT, assessed on operative specimen, distinguished the patients with versus without pathological complete response (pCR versus no-pCR respectively). We compared the mutational profiles, spectra and signatures, pathway mutations, copy number alterations (CNAs), HRD, and heterogeneity scores between pCR versus no-pCR patients.</p><p><strong>Results: </strong>The TMB, HRD, and mutational spectra were not different between the complete (N = 13) versus non-complete (N = 31) responders. The two most frequently mutated genes were TP53 and PIK3CA. They were more frequently mutated in the complete responders, but the difference was not significant. Only two genes, NLRP3 and SLC9B1, were significantly more frequently mutated in the complete responders (23% vs. 0%). By contrast, several biological pathways involved in protein translation, PI3K pathway, and signal transduction showed significantly higher mutation frequency in the patients with pCR. We observed a higher abundance of COSMIC signature 7 (due to ultraviolet light exposure) in tumors from complete responders. The comparison of CNAs of the 3808 genes included in the GISTIC regions between both patients' groups identified 234 genes as differentially altered. The CIN signatures were not differentially represented between the complete versus non-complete responders. Based on the H-index, the patients with heterogeneous tumors displayed a lower pCR rate (11%) than those with less heterogeneous tumors (35%).</p><p><strong>Conclusions: </strong>This is the first study aiming at identifying correlations between the WES data of IBC samples and the achievement of pCR to NACT. Our results, obtained in this 44-sample series, suggest a few subtle genomic alterations associated with pathological response. Additional investigations are required in larger series.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514970/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12967-024-05790-8","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Neoadjuvant chemotherapy (NACT) became a standard treatment strategy for patients with inflammatory breast cancer (IBC) because of high disease aggressiveness. However, given the heterogeneity of IBC, no molecular feature reliably predicts the response to chemotherapy. Whole-exome sequencing (WES) of clinical tumor samples provides an opportunity to identify genomic alterations associated with chemosensitivity.

Methods: We retrospectively applied WES to 44 untreated IBC primary tumor samples and matched normal DNA. The pathological response to NACT, assessed on operative specimen, distinguished the patients with versus without pathological complete response (pCR versus no-pCR respectively). We compared the mutational profiles, spectra and signatures, pathway mutations, copy number alterations (CNAs), HRD, and heterogeneity scores between pCR versus no-pCR patients.

Results: The TMB, HRD, and mutational spectra were not different between the complete (N = 13) versus non-complete (N = 31) responders. The two most frequently mutated genes were TP53 and PIK3CA. They were more frequently mutated in the complete responders, but the difference was not significant. Only two genes, NLRP3 and SLC9B1, were significantly more frequently mutated in the complete responders (23% vs. 0%). By contrast, several biological pathways involved in protein translation, PI3K pathway, and signal transduction showed significantly higher mutation frequency in the patients with pCR. We observed a higher abundance of COSMIC signature 7 (due to ultraviolet light exposure) in tumors from complete responders. The comparison of CNAs of the 3808 genes included in the GISTIC regions between both patients' groups identified 234 genes as differentially altered. The CIN signatures were not differentially represented between the complete versus non-complete responders. Based on the H-index, the patients with heterogeneous tumors displayed a lower pCR rate (11%) than those with less heterogeneous tumors (35%).

Conclusions: This is the first study aiming at identifying correlations between the WES data of IBC samples and the achievement of pCR to NACT. Our results, obtained in this 44-sample series, suggest a few subtle genomic alterations associated with pathological response. Additional investigations are required in larger series.

炎性乳腺癌的全外显子组图谱与新辅助化疗的病理反应
背景:新辅助化疗(NACT)已成为炎性乳腺癌(IBC)患者的标准治疗策略,因为这种疾病具有高度侵袭性。然而,鉴于 IBC 的异质性,没有任何分子特征能可靠地预测化疗反应。临床肿瘤样本的全外显子组测序(WES)为确定与化疗敏感性相关的基因组改变提供了机会:我们对 44 例未经治疗的 IBC 原发肿瘤样本和匹配的正常 DNA 进行了回顾性 WES 分析。根据手术标本对 NACT 的病理反应进行评估,区分有病理完全反应和无病理完全反应的患者(分别为有病理完全反应和无病理完全反应)。我们比较了pCR与非pCR患者的突变图谱、图谱和特征、通路突变、拷贝数改变(CNA)、HRD和异质性评分:完全应答者(13 例)与非完全应答者(31 例)的 TMB、HRD 和突变谱没有差异。两个最常突变的基因是 TP53 和 PIK3CA。这两个基因在完全应答者中的突变频率更高,但差异并不显著。只有 NLRP3 和 SLC9B1 这两个基因在完全应答者中的突变频率明显更高(23% 对 0%)。相比之下,涉及蛋白质翻译、PI3K 通路和信号转导的几个生物通路在 pCR 患者中的突变频率明显更高。在完全应答者的肿瘤中,我们观察到 COSMIC 特征 7 的丰度更高(紫外线照射所致)。通过比较两组患者 GISTIC 区域中 3808 个基因的 CNAs,发现 234 个基因发生了不同程度的改变。完全应答者与非完全应答者的 CIN 特征没有差异。根据H指数,异质性肿瘤患者的pCR率(11%)低于异质性较小的患者(35%):这是第一项旨在确定 IBC 样本 WES 数据与 NACT pCR 成功率之间相关性的研究。我们在这44个样本系列中获得的结果表明,一些微妙的基因组改变与病理反应有关。还需要在更大的系列中进行更多的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信