Louis Dennison, Grant M Duthie, Fabian Ehrmann, Michael A Psarakis
{"title":"Concurrent Validity and Interunit Reliability of 25-Hz GNSS Units for Profiling Sprinting Performance.","authors":"Louis Dennison, Grant M Duthie, Fabian Ehrmann, Michael A Psarakis","doi":"10.1519/JSC.0000000000004961","DOIUrl":null,"url":null,"abstract":"<p><strong>Abstract: </strong>Dennison, L, Duthie, GM, Ehrmann, F, and Psarakis, MA. Concurrent validity and interunit reliability of 25-Hz GNSS units for profiling sprinting performance. J Strength Cond Res 39(1): 107-114, 2025-Profiling sprint performance by assessing within-race velocity or time is crucial for understanding an athlete's capabilities and identifying areas for improvement. While traditional gold standard systems provide valid and reliable measurements, they are often costly, laboratory-based, or impractical for field-based settings. New Global Navigation Satellite System (GNSS) units (25 Hz) with higher sampling rates may address some of these limitations. The purpose of the project was to evaluate the concurrent validity and interunit reliability of 25-Hz GNSS units by examining their agreement with laser devices and timing gates for velocity measurements and sprint/interval times. Concurrent validity was assessed during a real track and field training session. Thirty subjects each completed 3 to 6 maximal 40-meter sprints, for a total of 106 sprints, while being assessed simultaneously through all systems. Interunit reliability was assessed by placing 3 GNSS units on a motor vehicle and completing 60 accelerations from 0 to 60 m. Low mean bias (<1%) and typical error less than <2% for all measurements demonstrate excellent agreement between GNSS and criterion devices. The units demonstrated good reliability for the 0-10 m interval time (intraclass correlation coefficient [ICC] = 0.86), excellent reliability for all remaining 10 m to 60 m intervals (ICC = 0.91-0.99), sprint times 0-60 m (ICC = 0.97), and maximal sprint velocity (ICC = 1.0). These GNSS units provide an efficient and feasible alternative to traditional measurement devices. For coaches, this technology offers a scalable method to concurrently assess the sprint performances of multiple athletes during training and competitions, enabling evidence-based decisions to guide athletic development.</p>","PeriodicalId":17129,"journal":{"name":"Journal of Strength and Conditioning Research","volume":" ","pages":"107-114"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strength and Conditioning Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1519/JSC.0000000000004961","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"SPORT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: Dennison, L, Duthie, GM, Ehrmann, F, and Psarakis, MA. Concurrent validity and interunit reliability of 25-Hz GNSS units for profiling sprinting performance. J Strength Cond Res 39(1): 107-114, 2025-Profiling sprint performance by assessing within-race velocity or time is crucial for understanding an athlete's capabilities and identifying areas for improvement. While traditional gold standard systems provide valid and reliable measurements, they are often costly, laboratory-based, or impractical for field-based settings. New Global Navigation Satellite System (GNSS) units (25 Hz) with higher sampling rates may address some of these limitations. The purpose of the project was to evaluate the concurrent validity and interunit reliability of 25-Hz GNSS units by examining their agreement with laser devices and timing gates for velocity measurements and sprint/interval times. Concurrent validity was assessed during a real track and field training session. Thirty subjects each completed 3 to 6 maximal 40-meter sprints, for a total of 106 sprints, while being assessed simultaneously through all systems. Interunit reliability was assessed by placing 3 GNSS units on a motor vehicle and completing 60 accelerations from 0 to 60 m. Low mean bias (<1%) and typical error less than <2% for all measurements demonstrate excellent agreement between GNSS and criterion devices. The units demonstrated good reliability for the 0-10 m interval time (intraclass correlation coefficient [ICC] = 0.86), excellent reliability for all remaining 10 m to 60 m intervals (ICC = 0.91-0.99), sprint times 0-60 m (ICC = 0.97), and maximal sprint velocity (ICC = 1.0). These GNSS units provide an efficient and feasible alternative to traditional measurement devices. For coaches, this technology offers a scalable method to concurrently assess the sprint performances of multiple athletes during training and competitions, enabling evidence-based decisions to guide athletic development.
期刊介绍:
The editorial mission of The Journal of Strength and Conditioning Research (JSCR) is to advance the knowledge about strength and conditioning through research. A unique aspect of this journal is that it includes recommendations for the practical use of research findings. While the journal name identifies strength and conditioning as separate entities, strength is considered a part of conditioning. This journal wishes to promote the publication of peer-reviewed manuscripts which add to our understanding of conditioning and sport through applied exercise science.