{"title":"Stochastic and alternating pacing paradigms to assess the stability of cardiac conduction","authors":"Stephan De Waard, Helene Hinnen, Jan P. Kucera","doi":"10.1016/j.yjmcc.2024.10.007","DOIUrl":null,"url":null,"abstract":"<div><div>Reentry, the most common cause of severe arrhythmias, is initiated by slow conduction and conduction block. Hence, evaluating conduction velocity and conduction block is of primary importance. However, the assessment of cardiac conduction safety in experimental and clinical settings remains elusive. To identify markers of conduction instability that can be determined experimentally, we developed an approach based on new pacing paradigms. Conduction across a cardiac tissue expansion was assessed in computer simulations and in experiments using cultures of neonatal murine cardiomyocytes on microelectrode arrays. Simulated and in vitro tissues were paced at a progressively increasing rate, with stochastic or alternating variations of cycle length, until conduction block occurred. Increasing pacing rate led to conduction block near the expansion. When stochastic or alternating variations were introduced into the pacing protocol, the standard deviation and the amplitude of alternating variations of local conduction times emerged as markers of unstable conduction prone to block. In both simulations and experiments, conduction delays were prolonged at the expansion but increased only slightly during the pacing protocol. In contrast, these markers of instability increased several-fold, early before block occurrence. The first and second moments of these two metrics provided an estimation of the site of block and the accuracy of this estimation. Therefore, when beat-to-beat variations of pacing cycle length are introduced into a pacing protocol, the local variability of conduction permits to predict sites of block. Our pacing paradigms may have translational applications in clinical cardiac electrophysiology, particularly in identifying ablation targets during mapping procedures.</div></div>","PeriodicalId":16402,"journal":{"name":"Journal of molecular and cellular cardiology","volume":"197 ","pages":"Pages 20-33"},"PeriodicalIF":4.9000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of molecular and cellular cardiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022282824001688","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Reentry, the most common cause of severe arrhythmias, is initiated by slow conduction and conduction block. Hence, evaluating conduction velocity and conduction block is of primary importance. However, the assessment of cardiac conduction safety in experimental and clinical settings remains elusive. To identify markers of conduction instability that can be determined experimentally, we developed an approach based on new pacing paradigms. Conduction across a cardiac tissue expansion was assessed in computer simulations and in experiments using cultures of neonatal murine cardiomyocytes on microelectrode arrays. Simulated and in vitro tissues were paced at a progressively increasing rate, with stochastic or alternating variations of cycle length, until conduction block occurred. Increasing pacing rate led to conduction block near the expansion. When stochastic or alternating variations were introduced into the pacing protocol, the standard deviation and the amplitude of alternating variations of local conduction times emerged as markers of unstable conduction prone to block. In both simulations and experiments, conduction delays were prolonged at the expansion but increased only slightly during the pacing protocol. In contrast, these markers of instability increased several-fold, early before block occurrence. The first and second moments of these two metrics provided an estimation of the site of block and the accuracy of this estimation. Therefore, when beat-to-beat variations of pacing cycle length are introduced into a pacing protocol, the local variability of conduction permits to predict sites of block. Our pacing paradigms may have translational applications in clinical cardiac electrophysiology, particularly in identifying ablation targets during mapping procedures.
期刊介绍:
The Journal of Molecular and Cellular Cardiology publishes work advancing knowledge of the mechanisms responsible for both normal and diseased cardiovascular function. To this end papers are published in all relevant areas. These include (but are not limited to): structural biology; genetics; proteomics; morphology; stem cells; molecular biology; metabolism; biophysics; bioengineering; computational modeling and systems analysis; electrophysiology; pharmacology and physiology. Papers are encouraged with both basic and translational approaches. The journal is directed not only to basic scientists but also to clinical cardiologists who wish to follow the rapidly advancing frontiers of basic knowledge of the heart and circulation.