Xueting Yao, Zehua Gong, Wenyan Yin, Hanbing Li, Dennis Douroumis, Lijiang Huang, Huaqiong Li
{"title":"Islet cell spheroids produced by a thermally sensitive scaffold: a new diabetes treatment.","authors":"Xueting Yao, Zehua Gong, Wenyan Yin, Hanbing Li, Dennis Douroumis, Lijiang Huang, Huaqiong Li","doi":"10.1186/s12951-024-02891-w","DOIUrl":null,"url":null,"abstract":"<p><p>The primary issues in treating type 1 diabetes mellitus (T1DM) through the transplantation of healthy islets or islet β-cells are graft rejection and a lack of available donors. Currently, the majority of approaches use cell encapsulation technology and transplant replacement cells that can release insulin to address transplant rejection and donor shortages. However, existing encapsulation materials merely serve as carriers for islet cell growth. A new treatment approach for T1DM could be developed by creating a smart responsive material that encourages the formation of islet cell spheroids to replicate their 3D connections in vivo and controls the release of insulin aggregates. In this study, we used microfluidics to create thermally sensitive porous scaffolds made of poly(N-isopropyl acrylamide)/graphene oxide (PNIPAM/GO). The material was carefully shrunk under near-infrared light, enriched with mouse insulinoma pancreatic β cells (β-TC-6 cells), encapsulated, and cultivated to form 3D cell spheroids. The controlled contraction of the thermally responsive porous scaffold regulated insulin release from the spheroids, demonstrated using the glucose-stimulated insulin release assay (GSIS), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assay. Eventually, implantation of the spheroids into C57BL/6 N diabetic mice enhanced the therapeutic effect, potentially offering a novel approach to the management of T1DM.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"657"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515210/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02891-w","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The primary issues in treating type 1 diabetes mellitus (T1DM) through the transplantation of healthy islets or islet β-cells are graft rejection and a lack of available donors. Currently, the majority of approaches use cell encapsulation technology and transplant replacement cells that can release insulin to address transplant rejection and donor shortages. However, existing encapsulation materials merely serve as carriers for islet cell growth. A new treatment approach for T1DM could be developed by creating a smart responsive material that encourages the formation of islet cell spheroids to replicate their 3D connections in vivo and controls the release of insulin aggregates. In this study, we used microfluidics to create thermally sensitive porous scaffolds made of poly(N-isopropyl acrylamide)/graphene oxide (PNIPAM/GO). The material was carefully shrunk under near-infrared light, enriched with mouse insulinoma pancreatic β cells (β-TC-6 cells), encapsulated, and cultivated to form 3D cell spheroids. The controlled contraction of the thermally responsive porous scaffold regulated insulin release from the spheroids, demonstrated using the glucose-stimulated insulin release assay (GSIS), enzyme-linked immunosorbent assay (ELISA), and immunofluorescence assay. Eventually, implantation of the spheroids into C57BL/6 N diabetic mice enhanced the therapeutic effect, potentially offering a novel approach to the management of T1DM.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.