{"title":"AuCePt porous hollow cascade nanozymes targeted delivery of disulfiram for alleviating hepatic insulin resistance.","authors":"Huawei Shen, Yafei Fu, Feifei Liu, Wanliang Zhang, Yin Yuan, Gangyi Yang, Mengliu Yang, Ling Li","doi":"10.1186/s12951-024-02880-z","DOIUrl":null,"url":null,"abstract":"<p><p>As the pathophysiological basis of type 2 diabetes mellitus (T2DM), insulin resistance (IR) is closely related to oxidative stress (OS) and inflammation, while nanozymes have a good therapeutic effect on inflammation and OS by scavenging reactive oxygen species (ROS). Hence, AuCePt porous hollow cascade nanozymes (AuCePt PHNs) are designed by integrating the dominant enzymatic activities of three metallic materials, which exhibit superior superoxide dismutase/catalase-like activities, and high drug loading capacity. In vitro experiments proved that AuCePt PHNs can ultra-efficiently scavenge endogenous and exogenous ROS. Moreover, AuCePt PHNs modified with lactobionic acid (LA) and loaded with disulfiram (DSF), named as AuCePt PHNs-LA@DSF, can significantly improve glucose uptake and glycogen synthesis in IR hepatocytes by regulating the insulin signaling pathways (IRS-1/AKT) and gluconeogenesis signaling pathways (FOXO-1/PEPCK). Intravenous administration of AuCePt PHNs-LA@DSF not only showed high liver targeting efficiency, but also reduced body weight and blood glucose and improved IR and lipid accumulation in high-fat diet-induced obese mice and diabetic ob/ob mice. This research elucidates the intrinsic activity of AuCePt PHNs for cascade scavenging of ROS, and reveals the potential effect of AuCePt PHNs-LA@DSF in T2DM treatment.</p>","PeriodicalId":16383,"journal":{"name":"Journal of Nanobiotechnology","volume":"22 1","pages":"660"},"PeriodicalIF":10.6000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515139/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanobiotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12951-024-02880-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
As the pathophysiological basis of type 2 diabetes mellitus (T2DM), insulin resistance (IR) is closely related to oxidative stress (OS) and inflammation, while nanozymes have a good therapeutic effect on inflammation and OS by scavenging reactive oxygen species (ROS). Hence, AuCePt porous hollow cascade nanozymes (AuCePt PHNs) are designed by integrating the dominant enzymatic activities of three metallic materials, which exhibit superior superoxide dismutase/catalase-like activities, and high drug loading capacity. In vitro experiments proved that AuCePt PHNs can ultra-efficiently scavenge endogenous and exogenous ROS. Moreover, AuCePt PHNs modified with lactobionic acid (LA) and loaded with disulfiram (DSF), named as AuCePt PHNs-LA@DSF, can significantly improve glucose uptake and glycogen synthesis in IR hepatocytes by regulating the insulin signaling pathways (IRS-1/AKT) and gluconeogenesis signaling pathways (FOXO-1/PEPCK). Intravenous administration of AuCePt PHNs-LA@DSF not only showed high liver targeting efficiency, but also reduced body weight and blood glucose and improved IR and lipid accumulation in high-fat diet-induced obese mice and diabetic ob/ob mice. This research elucidates the intrinsic activity of AuCePt PHNs for cascade scavenging of ROS, and reveals the potential effect of AuCePt PHNs-LA@DSF in T2DM treatment.
期刊介绍:
Journal of Nanobiotechnology is an open access peer-reviewed journal communicating scientific and technological advances in the fields of medicine and biology, with an emphasis in their interface with nanoscale sciences. The journal provides biomedical scientists and the international biotechnology business community with the latest developments in the growing field of Nanobiotechnology.