Antonella Cuniolo , María Victoria Martin , Corina M Berón
{"title":"Ferroptotic cyanobacteria as biocontrol agent of the southern house mosquito Culex quinquefasciatus","authors":"Antonella Cuniolo , María Victoria Martin , Corina M Berón","doi":"10.1016/j.jip.2024.108225","DOIUrl":null,"url":null,"abstract":"<div><div><em>Culex quinquefasciatus</em> is a hematophagous mosquito, widely distributed around the world, that plays a crucial role in public and veterinary health. As an efficient vector of etiological agents, it exhibits a marked preference for urban environments and human blood. Despite advances in mosquito-borne disease control, managing mosquito populations remains an economically efficient and safe strategy to reduce the impact of epidemic outbreaks. However, achieving this goal requires ecologically acceptable tools that ensure sustainability and minimize adverse environmental impacts. In the present work, we investigated the effect of a non-toxigenic model cyanobacterium on <em>Cx. quinquefasciatus</em> larvae through regulated cell death. We observed that heat stress treatment of <em>Synechocystis</em> PCC 6803 inducing ferroptosis, results in larval lipid oxidation, leading to their death. This effect can be mitigated by rearing larvae in an environment containing canonical inhibitors of ferroptosis, such as ferrostatin 1, or antioxidants, like glutathione and ascorbic acid. Furthermore, larval cell death induced by ferroptotic cyanobacteria is closely linked to oxidative dysregulation and lipid peroxidation, both hallmarks of ferroptosis. Moreover, while ferroptotic <em>Synechocystis</em> significantly affects larval development, it does not influence oviposition site selection by gravid females.</div></div>","PeriodicalId":16296,"journal":{"name":"Journal of invertebrate pathology","volume":"207 ","pages":"Article 108225"},"PeriodicalIF":3.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of invertebrate pathology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002220112400168X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Culex quinquefasciatus is a hematophagous mosquito, widely distributed around the world, that plays a crucial role in public and veterinary health. As an efficient vector of etiological agents, it exhibits a marked preference for urban environments and human blood. Despite advances in mosquito-borne disease control, managing mosquito populations remains an economically efficient and safe strategy to reduce the impact of epidemic outbreaks. However, achieving this goal requires ecologically acceptable tools that ensure sustainability and minimize adverse environmental impacts. In the present work, we investigated the effect of a non-toxigenic model cyanobacterium on Cx. quinquefasciatus larvae through regulated cell death. We observed that heat stress treatment of Synechocystis PCC 6803 inducing ferroptosis, results in larval lipid oxidation, leading to their death. This effect can be mitigated by rearing larvae in an environment containing canonical inhibitors of ferroptosis, such as ferrostatin 1, or antioxidants, like glutathione and ascorbic acid. Furthermore, larval cell death induced by ferroptotic cyanobacteria is closely linked to oxidative dysregulation and lipid peroxidation, both hallmarks of ferroptosis. Moreover, while ferroptotic Synechocystis significantly affects larval development, it does not influence oviposition site selection by gravid females.
期刊介绍:
The Journal of Invertebrate Pathology presents original research articles and notes on the induction and pathogenesis of diseases of invertebrates, including the suppression of diseases in beneficial species, and the use of diseases in controlling undesirable species. In addition, the journal publishes the results of physiological, morphological, genetic, immunological and ecological studies as related to the etiologic agents of diseases of invertebrates.
The Journal of Invertebrate Pathology is the adopted journal of the Society for Invertebrate Pathology, and is available to SIP members at a special reduced price.