Characterization of Brain Abnormalities in Lactational Neurodevelopmental Poly I:C Rat Model of Schizophrenia and Depression Using Machine-Learning and Quantitative MRI.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Rona Haker, Coral Helft, Emilya Natali Shamir, Moni Shahar, Hadas Solomon, Noam Omer, Tamar Blumenfeld-Katzir, Sharon Zlotzover, Yael Piontkewitz, Ina Weiner, Noam Ben-Eliezer
{"title":"Characterization of Brain Abnormalities in Lactational Neurodevelopmental Poly I:C Rat Model of Schizophrenia and Depression Using Machine-Learning and Quantitative MRI.","authors":"Rona Haker, Coral Helft, Emilya Natali Shamir, Moni Shahar, Hadas Solomon, Noam Omer, Tamar Blumenfeld-Katzir, Sharon Zlotzover, Yael Piontkewitz, Ina Weiner, Noam Ben-Eliezer","doi":"10.1002/jmri.29634","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>A recent neurodevelopmental rat model, utilizing lactational exposure to polyriboinosinic-polyribocytidilic acid (Poly I:C) leads to mimics of behavioral phenotypes resembling schizophrenia-like symptoms in male offspring and depression-like symptoms in female offspring.</p><p><strong>Purpose: </strong>To identify mechanisms of neuronal abnormalities in lactational Poly I:C offspring using quantitative MRI (qMRI) tools.</p><p><strong>Study type: </strong>Prospective.</p><p><strong>Animal model: </strong>Twenty Poly I:C rats and 20 healthy control rats, age 130 postnatal day.</p><p><strong>Field strength/sequence: </strong>7 T. Multiflip-angle FLASH protocol for T<sub>1</sub> mapping; multi-echo spin-echo T<sub>2</sub>-mapping protocol; echo planar imaging protocol for diffusion tensor imaging.</p><p><strong>Assessment: </strong>Nursing dams were injected with the viral mimic Poly I:C or saline (control group). In adulthood, quantitative maps of T<sub>1</sub>, T<sub>2</sub>, proton density, and five diffusion metrics were generated for the offsprings. Seven regions of interest (ROIs) were segmented, followed by extracting 10 quantitative features for each ROI.</p><p><strong>Statistical tests: </strong>Random forest machine learning (ML) tool was employed to identify MRI markers of disease and classify Poly I:C rats from healthy controls based on quantitative features.</p><p><strong>Results: </strong>Poly I:C rats were identified from controls with an accuracy of 82.5 ± 25.9% for females and 85.0 ± 24.0% for males. Poly I:C females exhibited differences mainly in diffusion-derived parameters in the thalamus and the medial prefrontal cortex (MPFC), while males displayed changes primarily in diffusion-derived parameters in the corpus callosum and MPFC.</p><p><strong>Data conclusion: </strong>qMRI shows potential for identifying sex-specific brain abnormalities in the Poly I:C model of neurodevelopmental disorders.</p><p><strong>Level of evidence: </strong>NA TECHNICAL EFFICACY: Stage 2.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jmri.29634","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background: A recent neurodevelopmental rat model, utilizing lactational exposure to polyriboinosinic-polyribocytidilic acid (Poly I:C) leads to mimics of behavioral phenotypes resembling schizophrenia-like symptoms in male offspring and depression-like symptoms in female offspring.

Purpose: To identify mechanisms of neuronal abnormalities in lactational Poly I:C offspring using quantitative MRI (qMRI) tools.

Study type: Prospective.

Animal model: Twenty Poly I:C rats and 20 healthy control rats, age 130 postnatal day.

Field strength/sequence: 7 T. Multiflip-angle FLASH protocol for T1 mapping; multi-echo spin-echo T2-mapping protocol; echo planar imaging protocol for diffusion tensor imaging.

Assessment: Nursing dams were injected with the viral mimic Poly I:C or saline (control group). In adulthood, quantitative maps of T1, T2, proton density, and five diffusion metrics were generated for the offsprings. Seven regions of interest (ROIs) were segmented, followed by extracting 10 quantitative features for each ROI.

Statistical tests: Random forest machine learning (ML) tool was employed to identify MRI markers of disease and classify Poly I:C rats from healthy controls based on quantitative features.

Results: Poly I:C rats were identified from controls with an accuracy of 82.5 ± 25.9% for females and 85.0 ± 24.0% for males. Poly I:C females exhibited differences mainly in diffusion-derived parameters in the thalamus and the medial prefrontal cortex (MPFC), while males displayed changes primarily in diffusion-derived parameters in the corpus callosum and MPFC.

Data conclusion: qMRI shows potential for identifying sex-specific brain abnormalities in the Poly I:C model of neurodevelopmental disorders.

Level of evidence: NA TECHNICAL EFFICACY: Stage 2.

利用机器学习和定量 MRI 分析哺乳期神经发育多聚 I:C 大鼠精神分裂症和抑郁症模型大脑异常的特征。
背景:目的:使用定量核磁共振成像(qMRI)工具确定哺乳期Poly I:C后代神经元异常的机制:动物模型20只Poly I:C大鼠和20只健康对照组大鼠,出生后130天:7 T.用于 T1 映射的多翻转角度 FLASH 方案;用于 T2 映射的多回波自旋回波方案;用于弥散张量成像的回波平面成像方案:给哺乳母鼠注射病毒模拟物 Poly I:C 或生理盐水(对照组)。成年后,为后代生成 T1、T2、质子密度和五种扩散指标的定量图。对七个感兴趣区(ROI)进行分割,然后为每个感兴趣区提取 10 个定量特征:统计测试:采用随机森林机器学习(ML)工具识别疾病的 MRI 标记,并根据定量特征将多发性 I:C 大鼠与健康对照组进行分类:雌性多发性 I:C 大鼠从对照组中识别出来的准确率为 82.5 ± 25.9%,雄性为 85.0 ± 24.0%。数据结论:qMRI 显示了在神经发育障碍的 Poly I:C 模型中识别性别特异性大脑异常的潜力:不适用 技术效率:第二阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信