{"title":"Fluorescence Entrenched Probe for Onsite Detection of Amoxicillin Residue in Bovine Milk.","authors":"Abinaya Muthukumar, Swarnalatha Kalaiyar","doi":"10.1007/s10895-024-03959-4","DOIUrl":null,"url":null,"abstract":"<p><p>A novel fluorescent probe (E)-3-(4-hydroxyphenyl)-2-((pyrene-1-ylmethylene) amino)propanoic acid (PyT) was developed for the 'turn-on' detection of amoxicillin(AM), residues. The PyT molecule was developed by a simple condensation reaction between a biologically important tyrosine amino acid and pyrene carboxaldehyde. The small fluorophore molecule has spectacular photoluminescence properties such as large stock shift, high photostability, selectivity and sensitivity toward the analytes. The PyT upon dispersion in the liquid phase becomes highly luminescent possessing the restricted intramolecular rotation (RIR) and excited stated intramolecular proton transfer (ESIPT) properties which are the major criteria for aggregation induced emission enhancement (AIEE) mechanism prevailing the aggregation caused quenching (ACQ). PyT molecule shows a binding constant of 3.285 × 10<sup>4</sup> L mol<sup>-1</sup> for amoxicillin (AM). The limit of detection (LOD) values are found to be 1.67µM. Consuming bovine milk with antibiotic residues exceeding the maximum residue limit (MRL) can lead to food toxicity and life threatening diseases in humans. The milk sample with AM antibiotic residue in presence of PyT probe shows a distinct blue colour which infers the selectivity and sensitivity of the probe towards the analyte. The fluorescence probe adheres with merits like on site and visual examination by naked eye without aid of any instruments.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03959-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A novel fluorescent probe (E)-3-(4-hydroxyphenyl)-2-((pyrene-1-ylmethylene) amino)propanoic acid (PyT) was developed for the 'turn-on' detection of amoxicillin(AM), residues. The PyT molecule was developed by a simple condensation reaction between a biologically important tyrosine amino acid and pyrene carboxaldehyde. The small fluorophore molecule has spectacular photoluminescence properties such as large stock shift, high photostability, selectivity and sensitivity toward the analytes. The PyT upon dispersion in the liquid phase becomes highly luminescent possessing the restricted intramolecular rotation (RIR) and excited stated intramolecular proton transfer (ESIPT) properties which are the major criteria for aggregation induced emission enhancement (AIEE) mechanism prevailing the aggregation caused quenching (ACQ). PyT molecule shows a binding constant of 3.285 × 104 L mol-1 for amoxicillin (AM). The limit of detection (LOD) values are found to be 1.67µM. Consuming bovine milk with antibiotic residues exceeding the maximum residue limit (MRL) can lead to food toxicity and life threatening diseases in humans. The milk sample with AM antibiotic residue in presence of PyT probe shows a distinct blue colour which infers the selectivity and sensitivity of the probe towards the analyte. The fluorescence probe adheres with merits like on site and visual examination by naked eye without aid of any instruments.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.