Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection.

IF 5 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Ana Elisabeth Olivares-Hernandez, Miguel Angel Olivares-Robles, Juan Vicente Méndez-Méndez, Claudia Gutiérrez-Camacho
{"title":"Microfilm Coatings: A Biomaterial-Based Strategy for Modulating Femoral Deflection.","authors":"Ana Elisabeth Olivares-Hernandez, Miguel Angel Olivares-Robles, Juan Vicente Méndez-Méndez, Claudia Gutiérrez-Camacho","doi":"10.3390/jfb15100283","DOIUrl":null,"url":null,"abstract":"<p><p>Wear on the surface of the femoral head increases the risk of hip and femur fractures. Biomechanical experiments conducted on the femur are based on its bending and torsional rigidities. Studies regarding the deflection of the femur bone when the femoral head is coated with microfilms composed of durable and compatible biomaterials are poor. This study aimed to investigate the effects of different biomaterial microfilm coatings over the femoral head on the deflection of the human femur. We utilized 2023 R1 finite element analysis (FEA) software to model the directional deformation on the femoral head and examine the femur's deflection with varying microfilm thicknesses. The deflection of the femur bone was reported when the femoral head was uncoated and coated with titanium, stainless steel, and pure gold microfilms of different thicknesses (namely, 50, 75, and 100 μm). Our results show that the femur's minimum and maximum deflection occurred for stainless steel and gold, respectively. The deformation of the femur was lower when the femoral head was coated with a 50-micrometer microfilm of stainless steel, compared to the deformation obtained with gold and titanium. When the thickness of the microfilm for each of the materials was increased, the deformation continued to decrease. The minimum deformation of the femur occurred for a thickness of 100 μm with stainless steel, followed by titanium and gold. The difference in the directional deformation of the femur between the materials was more significant when the coating was 100 μm, compared to the thicknesses of 50 and 75 μm. The findings of this study are expected to significantly contribute to the development of advanced medical techniques to enhance the quality of life for patients with femur bone-related issues. This information can be used to develop more resilient coatings that can withstand wear and tear.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508653/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15100283","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Wear on the surface of the femoral head increases the risk of hip and femur fractures. Biomechanical experiments conducted on the femur are based on its bending and torsional rigidities. Studies regarding the deflection of the femur bone when the femoral head is coated with microfilms composed of durable and compatible biomaterials are poor. This study aimed to investigate the effects of different biomaterial microfilm coatings over the femoral head on the deflection of the human femur. We utilized 2023 R1 finite element analysis (FEA) software to model the directional deformation on the femoral head and examine the femur's deflection with varying microfilm thicknesses. The deflection of the femur bone was reported when the femoral head was uncoated and coated with titanium, stainless steel, and pure gold microfilms of different thicknesses (namely, 50, 75, and 100 μm). Our results show that the femur's minimum and maximum deflection occurred for stainless steel and gold, respectively. The deformation of the femur was lower when the femoral head was coated with a 50-micrometer microfilm of stainless steel, compared to the deformation obtained with gold and titanium. When the thickness of the microfilm for each of the materials was increased, the deformation continued to decrease. The minimum deformation of the femur occurred for a thickness of 100 μm with stainless steel, followed by titanium and gold. The difference in the directional deformation of the femur between the materials was more significant when the coating was 100 μm, compared to the thicknesses of 50 and 75 μm. The findings of this study are expected to significantly contribute to the development of advanced medical techniques to enhance the quality of life for patients with femur bone-related issues. This information can be used to develop more resilient coatings that can withstand wear and tear.

微薄膜涂层:基于生物材料的股骨变形调节策略
股骨头表面的磨损增加了髋部和股骨骨折的风险。对股骨进行的生物力学实验以其弯曲和扭转刚性为基础。有关股骨头表面涂有由耐用且兼容的生物材料组成的微薄膜时股骨头变形的研究还很少。本研究旨在探讨股骨头上不同生物材料微膜涂层对人体股骨挠度的影响。我们利用 2023 R1 有限元分析(FEA)软件建立了股骨头定向变形模型,并研究了不同微膜厚度下的股骨挠度。报告了股骨头未涂层和涂层不同厚度(即 50、75 和 100 μm)的钛、不锈钢和纯金微膜时的股骨头挠度。结果表明,不锈钢和金的股骨变形量分别最小和最大。与金和钛的变形量相比,在股骨头上覆盖 50 微米不锈钢微膜时,股骨的变形量较小。当每种材料的微膜厚度增加时,变形继续减小。不锈钢厚度为 100 μm 时,股骨变形最小,其次是钛和金。与 50 微米和 75 微米的厚度相比,当涂层厚度为 100 微米时,不同材料的股骨定向变形差异更为显著。这项研究的结果有望极大地促进先进医疗技术的发展,从而提高股骨头相关问题患者的生活质量。这些信息可用于开发更有弹性、更能承受磨损的涂层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信