{"title":"A pH-Responsive Ti-Based Local Drug Delivery System for Osteosarcoma Therapy.","authors":"Qinle Xiao, Changjun Wan, Zhe Zhang, Hui Liu, Pingting Liu, Qianli Huang, Dapeng Zhao","doi":"10.3390/jfb15100312","DOIUrl":null,"url":null,"abstract":"<p><p>Osteosarcoma is one of the major bone cancers, especially for youngsters. The current treatment usually requires systemic chemotherapy and the removal of bone tumors. Titanium (Ti)-based implants can be modified as local drug delivery (LDD) systems for controllable and localized chemotherapeutic drug release. In this work, a pH-responsive Ti-based LDD prototype was designed by introducing polydopamine (PDA) to release doxorubicin (DOX) around osteosarcoma cells with low pH. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a contact angle meter were applied for surface characterization. Both direct and indirect cell culture modes were performed for biocompatibility and biofunction assessments. The results indicate that the Ti-based LDD prototype exhibits significant pH-dependent DOX release. The cumulative release can reach up to approximately 40% at pH = 6.0 after 72 h, but only around 20% at pH = 7.4. The Ti-based LDD implant shows good biocompatibility with approximately 93% viability of MC3T3 cells after direct culture in vitro for 24 h. Both direct and indirect culture modes verify the good anti-osteosarcoma function of the LDD implant, which should be attributed to the pH-responsive release of DOX.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb15100312","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Osteosarcoma is one of the major bone cancers, especially for youngsters. The current treatment usually requires systemic chemotherapy and the removal of bone tumors. Titanium (Ti)-based implants can be modified as local drug delivery (LDD) systems for controllable and localized chemotherapeutic drug release. In this work, a pH-responsive Ti-based LDD prototype was designed by introducing polydopamine (PDA) to release doxorubicin (DOX) around osteosarcoma cells with low pH. Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a contact angle meter were applied for surface characterization. Both direct and indirect cell culture modes were performed for biocompatibility and biofunction assessments. The results indicate that the Ti-based LDD prototype exhibits significant pH-dependent DOX release. The cumulative release can reach up to approximately 40% at pH = 6.0 after 72 h, but only around 20% at pH = 7.4. The Ti-based LDD implant shows good biocompatibility with approximately 93% viability of MC3T3 cells after direct culture in vitro for 24 h. Both direct and indirect culture modes verify the good anti-osteosarcoma function of the LDD implant, which should be attributed to the pH-responsive release of DOX.
期刊介绍:
Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.