Xiang Dong , Xing Chen , Fazhi Xie , Liugen Zheng , Zihan Zhang , Xinyi Fu , Tianqi Ma
{"title":"Determining the evaporation and evolution of surface water in a large catchment using isotopes and multiple models","authors":"Xiang Dong , Xing Chen , Fazhi Xie , Liugen Zheng , Zihan Zhang , Xinyi Fu , Tianqi Ma","doi":"10.1016/j.jconhyd.2024.104446","DOIUrl":null,"url":null,"abstract":"<div><div>The evolution and formation mechanisms of chemical components in surface water can reflect changes in the geological background of a basin and the extent of human interference. The Yangtze River basin is the largest water source area in China, yet its main ion sources and formation mechanisms are not fully understood. This study uses a combination of hydrochemistry, stable isotopes (δ<sup>18</sup>O, δD), the Craig-Gordon model, and the APCS-MLR model to quantitatively assess the water source replenishment and evaporation intensity of surface water in the Yangtze River. The study reveals the primary ion sources and controlling factors of surface water in the Yangtze River. The results show that the hydrochemical type in the upstream is mainly HCO<sub>3</sub><sup>−</sup>-Ca<sup>2+</sup> and Na<sup>+</sup>-K<sup>+</sup>, while in the midstream and downstream it is primarily HCO<sub>3</sub><sup>−</sup>-Ca<sup>2+</sup> and SO<sub>4</sub><sup>2−</sup>-Ca<sup>2+</sup>. The evolution of hydrochemical types is mainly controlled by rock weathering and human inputs. The surface water sources in the Yangtze River are directly replenished by precipitation, with the evaporation ratio in the upstream (0.66) being higher than in the midstream (0.63) and downstream (0.47). The lc-excess in the upstream (−0.32 ‰) is lower than in the midstream (1.21 ‰) and downstream (−0.27 ‰), indicating more intense evaporation in the upstream. The hydrochemical composition of the Yangtze River surface water mainly comes from geological factors (80.5 %), industrial factors (11.1 %), agricultural factors (6.4 %), and unknown factors (2.0 %). This study enhances the understanding of the chemical composition, water source replenishment, ion sources, and evolution mechanisms of the Yangtze River surface water, providing a basis for maintaining water quality and sustainable development in the Yangtze River basin.</div></div>","PeriodicalId":15530,"journal":{"name":"Journal of contaminant hydrology","volume":"267 ","pages":"Article 104446"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of contaminant hydrology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169772224001505","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The evolution and formation mechanisms of chemical components in surface water can reflect changes in the geological background of a basin and the extent of human interference. The Yangtze River basin is the largest water source area in China, yet its main ion sources and formation mechanisms are not fully understood. This study uses a combination of hydrochemistry, stable isotopes (δ18O, δD), the Craig-Gordon model, and the APCS-MLR model to quantitatively assess the water source replenishment and evaporation intensity of surface water in the Yangtze River. The study reveals the primary ion sources and controlling factors of surface water in the Yangtze River. The results show that the hydrochemical type in the upstream is mainly HCO3−-Ca2+ and Na+-K+, while in the midstream and downstream it is primarily HCO3−-Ca2+ and SO42−-Ca2+. The evolution of hydrochemical types is mainly controlled by rock weathering and human inputs. The surface water sources in the Yangtze River are directly replenished by precipitation, with the evaporation ratio in the upstream (0.66) being higher than in the midstream (0.63) and downstream (0.47). The lc-excess in the upstream (−0.32 ‰) is lower than in the midstream (1.21 ‰) and downstream (−0.27 ‰), indicating more intense evaporation in the upstream. The hydrochemical composition of the Yangtze River surface water mainly comes from geological factors (80.5 %), industrial factors (11.1 %), agricultural factors (6.4 %), and unknown factors (2.0 %). This study enhances the understanding of the chemical composition, water source replenishment, ion sources, and evolution mechanisms of the Yangtze River surface water, providing a basis for maintaining water quality and sustainable development in the Yangtze River basin.
期刊介绍:
The Journal of Contaminant Hydrology is an international journal publishing scientific articles pertaining to the contamination of subsurface water resources. Emphasis is placed on investigations of the physical, chemical, and biological processes influencing the behavior and fate of organic and inorganic contaminants in the unsaturated (vadose) and saturated (groundwater) zones, as well as at groundwater-surface water interfaces. The ecological impacts of contaminants transported both from and to aquifers are of interest. Articles on contamination of surface water only, without a link to groundwater, are out of the scope. Broad latitude is allowed in identifying contaminants of interest, and include legacy and emerging pollutants, nutrients, nanoparticles, pathogenic microorganisms (e.g., bacteria, viruses, protozoa), microplastics, and various constituents associated with energy production (e.g., methane, carbon dioxide, hydrogen sulfide).
The journal''s scope embraces a wide range of topics including: experimental investigations of contaminant sorption, diffusion, transformation, volatilization and transport in the surface and subsurface; characterization of soil and aquifer properties only as they influence contaminant behavior; development and testing of mathematical models of contaminant behaviour; innovative techniques for restoration of contaminated sites; development of new tools or techniques for monitoring the extent of soil and groundwater contamination; transformation of contaminants in the hyporheic zone; effects of contaminants traversing the hyporheic zone on surface water and groundwater ecosystems; subsurface carbon sequestration and/or turnover; and migration of fluids associated with energy production into groundwater.