Effect of peptide hydrophilicity on membrane curvature and permeation.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Anjana V Mathath, Debashree Chakraborty
{"title":"Effect of peptide hydrophilicity on membrane curvature and permeation.","authors":"Anjana V Mathath, Debashree Chakraborty","doi":"10.1063/5.0226869","DOIUrl":null,"url":null,"abstract":"<p><p>Using a well-developed reaction coordinate in umbrella sampling, we studied the single peptide permeation through a model cancerous cell membrane, varying the hydrophilicity and the charge of the peptides. Two peptides, melittin and pHD108, were studied. The permeation mechanism differs from a barrel-stave-like mechanism to toroidal pore and vesicle formation based on the number and the placement of the hydrophilic amino acids in the peptide. Membrane curvature changes dynamically as the permeation process occurs. In the case of vesicles, the peptide traverses along a smooth, homogenous pathway, whereas a rugged, steep pathway was found when lipid molecules did not line up along the wall of the membrane (barrel-stave-like mechanism). A mechanism similar to a toroidal pore consists of multiple minima. Higher free energy was found for the permeating terminal containing charged amino acid residues. Vesicle formation was found for pHD108 peptide N-terminal with a maximum membrane thinning effect of 54.4% with free energy cost of 8.20 ± 0.10 kcal mol-1 and pore radius of 2.33 ± 0.07 nm. Insights gained from this study can help to build synthetic peptides for drug delivery.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0226869","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Using a well-developed reaction coordinate in umbrella sampling, we studied the single peptide permeation through a model cancerous cell membrane, varying the hydrophilicity and the charge of the peptides. Two peptides, melittin and pHD108, were studied. The permeation mechanism differs from a barrel-stave-like mechanism to toroidal pore and vesicle formation based on the number and the placement of the hydrophilic amino acids in the peptide. Membrane curvature changes dynamically as the permeation process occurs. In the case of vesicles, the peptide traverses along a smooth, homogenous pathway, whereas a rugged, steep pathway was found when lipid molecules did not line up along the wall of the membrane (barrel-stave-like mechanism). A mechanism similar to a toroidal pore consists of multiple minima. Higher free energy was found for the permeating terminal containing charged amino acid residues. Vesicle formation was found for pHD108 peptide N-terminal with a maximum membrane thinning effect of 54.4% with free energy cost of 8.20 ± 0.10 kcal mol-1 and pore radius of 2.33 ± 0.07 nm. Insights gained from this study can help to build synthetic peptides for drug delivery.

多肽亲水性对膜曲率和渗透性的影响
利用伞状取样中成熟的反应坐标,我们研究了单肽通过模型癌细胞膜的渗透性,并改变了肽的亲水性和电荷。我们研究了两种肽,即 Melittin 和 pHD108。根据肽中亲水氨基酸的数量和位置,渗透机制从桶形波纹状机制到环形孔和囊泡的形成有所不同。在渗透过程中,膜曲率会发生动态变化。在囊泡的情况下,肽沿着平滑、均匀的路径穿过,而当脂质分子没有沿着膜壁排成一行时,则会发现一条崎岖、陡峭的路径(类似于桶状阶梯的机制)。类似环形孔的机制由多个最小值组成。含有带电氨基酸残基的渗透端自由能较高。发现 pHD108 肽 N 端的囊泡形成具有 54.4% 的最大膜变薄效应,自由能成本为 8.20 ± 0.10 kcal mol-1,孔半径为 2.33 ± 0.07 nm。本研究获得的启示有助于构建用于给药的合成肽。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信