Improvement of Quantification of Myocardial Synthetic ECV with Second-Generation Deep Learning Reconstruction.

IF 2.4 4区 医学 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS
Tsubasa Morioka, Shingo Kato, Ayano Onoma, Toshiharu Izumi, Tomokazu Sakano, Eiji Ishikawa, Shungo Sawamura, Naofumi Yasuda, Hiroaki Nagase, Daisuke Utsunomiya
{"title":"Improvement of Quantification of Myocardial Synthetic ECV with Second-Generation Deep Learning Reconstruction.","authors":"Tsubasa Morioka, Shingo Kato, Ayano Onoma, Toshiharu Izumi, Tomokazu Sakano, Eiji Ishikawa, Shungo Sawamura, Naofumi Yasuda, Hiroaki Nagase, Daisuke Utsunomiya","doi":"10.3390/jcdd11100304","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The utility of synthetic ECV, which does not require hematocrit values, has been reported; however, high-quality CT images are essential for accurate quantification. Second-generation Deep Learning Reconstruction (DLR) enables low-noise and high-resolution cardiac CT images. The aim of this study is to compare the differences among four reconstruction methods (hybrid iterative reconstruction (HIR), model-based iterative reconstruction (MBIR), DLR, and second-generation DLR) in the quantification of synthetic ECV.</p><p><strong>Methods: </strong>We retrospectively analyzed 80 patients who underwent cardiac CT scans, including late contrast-enhanced CT (derivation cohort: <i>n</i> = 40, age 71 ± 12 years, 24 males; validation cohort: <i>n</i> = 40, age 67 ± 11 years, 25 males). In the derivation cohort, a linear regression analysis was performed between the hematocrit values from blood tests and the CT values of the right atrial blood pool on non-contrast CT. In the validation cohort, synthetic hematocrit values were calculated using the linear regression equation and the right atrial CT values from non-contrast CT. The correlation and mean difference between synthetic ECV and laboratory ECV calculated from actual blood tests were assessed.</p><p><strong>Results: </strong>Synthetic ECV and laboratory ECV showed a high correlation across all four reconstruction methods (R ≥ 0.95, <i>p</i> < 0.001). The bias and limit of agreement (LOA) in the Bland-Altman plot were lowest with the second-generation DLR (hybrid IR: bias = -0.21, LOA: 3.16; MBIR: bias = -0.79, LOA: 2.81; DLR: bias = -1.87, LOA: 2.90; second-generation DLR: bias = -0.20, LOA: 2.35).</p><p><strong>Conclusions: </strong>Synthetic ECV using second-generation DLR demonstrated the lowest bias and LOA compared to laboratory ECV among the four reconstruction methods, suggesting that second-generation DLR enables more accurate quantification.</p>","PeriodicalId":15197,"journal":{"name":"Journal of Cardiovascular Development and Disease","volume":"11 10","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11514731/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cardiovascular Development and Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3390/jcdd11100304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The utility of synthetic ECV, which does not require hematocrit values, has been reported; however, high-quality CT images are essential for accurate quantification. Second-generation Deep Learning Reconstruction (DLR) enables low-noise and high-resolution cardiac CT images. The aim of this study is to compare the differences among four reconstruction methods (hybrid iterative reconstruction (HIR), model-based iterative reconstruction (MBIR), DLR, and second-generation DLR) in the quantification of synthetic ECV.

Methods: We retrospectively analyzed 80 patients who underwent cardiac CT scans, including late contrast-enhanced CT (derivation cohort: n = 40, age 71 ± 12 years, 24 males; validation cohort: n = 40, age 67 ± 11 years, 25 males). In the derivation cohort, a linear regression analysis was performed between the hematocrit values from blood tests and the CT values of the right atrial blood pool on non-contrast CT. In the validation cohort, synthetic hematocrit values were calculated using the linear regression equation and the right atrial CT values from non-contrast CT. The correlation and mean difference between synthetic ECV and laboratory ECV calculated from actual blood tests were assessed.

Results: Synthetic ECV and laboratory ECV showed a high correlation across all four reconstruction methods (R ≥ 0.95, p < 0.001). The bias and limit of agreement (LOA) in the Bland-Altman plot were lowest with the second-generation DLR (hybrid IR: bias = -0.21, LOA: 3.16; MBIR: bias = -0.79, LOA: 2.81; DLR: bias = -1.87, LOA: 2.90; second-generation DLR: bias = -0.20, LOA: 2.35).

Conclusions: Synthetic ECV using second-generation DLR demonstrated the lowest bias and LOA compared to laboratory ECV among the four reconstruction methods, suggesting that second-generation DLR enables more accurate quantification.

利用第二代深度学习重构技术改进心肌合成心动图的定量。
背景:有报道称,合成 ECV 不需要血细胞比容值,但高质量的 CT 图像对准确量化至关重要。第二代深度学习重建(DLR)可实现低噪声、高分辨率的心脏 CT 图像。本研究旨在比较四种重建方法(混合迭代重建(HIR)、基于模型的迭代重建(MBIR)、DLR 和第二代 DLR)在量化合成 ECV 方面的差异:我们回顾性分析了 80 名接受心脏 CT 扫描(包括晚期对比增强 CT)的患者(推导队列:n = 40,年龄 71 ± 12 岁,男性 24 人;验证队列:n = 40,年龄 67 ± 11 岁,男性 25 人)。在推导队列中,对血液检测中的血细胞比容值与非对比 CT 上右心房血池的 CT 值进行了线性回归分析。在验证队列中,使用线性回归方程和非对比 CT 的右心房 CT 值计算合成血细胞比容值。评估了合成 ECV 与实验室实际血液检测计算出的 ECV 之间的相关性和平均差异:在所有四种重建方法中,合成 ECV 和实验室 ECV 都显示出高度相关性(R ≥ 0.95,p < 0.001)。第二代 DLR 在 Bland-Altman 图中的偏差和一致性限值(LOA)最低(混合 IR:偏差 = -0.21,LOA:3.16;MBIR:偏差 = -0.79,LOA:2.81;DLR:偏差 = -1.87,LOA:2.90;第二代 DLR:偏差 = -0.20,LOA:2.35):结论:在四种重建方法中,使用第二代 DLR 的合成 ECV 与实验室 ECV 相比,偏差和 LOA 最低,这表明第二代 DLR 能够实现更准确的量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cardiovascular Development and Disease
Journal of Cardiovascular Development and Disease CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
2.60
自引率
12.50%
发文量
381
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信