{"title":"Screening Antioxidant Components in Yiwei Decoction Using Spectrum-Effect Relationship and Network Pharmacology.","authors":"Lei Zhang, Wei Zhu","doi":"10.1155/2024/5514265","DOIUrl":null,"url":null,"abstract":"<p><p>Yiwei decoction (YWD) is a classic prescription with the function of nourishing stomach yin. In this study, the effective components of antioxidant activity of YWD and its possible mechanism were discussed from the point of view of spectral effect relationship and network pharmacology. Firstly, the fingerprints of 10 batches of YWD were established by UPLC-PDA technique, and the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging rate and total antioxidant capacity (T-AOC) were used as the indicators for antioxidant activity in vitro. Then, the spectral effect relationship between the fingerprint profiles and antioxidant capacity was analyzed through grey relational analysis (GRA) and orthogonal projections to latent structures (OPLS). In addition, network pharmacology was employed to predict the potential mechanisms of YWD in the treatment of antioxidant-related diseases. The spectrum-effect relationship indicated that three common peaks were likely to be the most decisive active components, identified as verbascoside, psoralen, and vitexin, respectively. Based on network pharmacology analysis, a total of 83 target genes shared by the active components and antioxidant-related diseases were collected. AKT1, HSP90AA1, SRC, CASP3, and MTOR were closely related to antioxidant therapy and considered as core therapeutic targets. The potential mechanisms of YWD were obtained through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, molecular docking simulations were conducted to evaluate the binding activities between the core therapeutic targets and corresponding compounds. The excellent core protein-compound complexes obtained by molecular docking were simulated by molecular dynamics simulation. The results showed that the active compounds had good binding ability with the selected targets. This study successfully identified the effective components of YWD and predicted the potential targets and pathways, which provided a new idea for the application of YWD in the treatment of antioxidant stress in the future. In addition, the potential active components provide valuable implications for drug screening of related diseases.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":"2024 ","pages":"5514265"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11498994/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2024/5514265","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Yiwei decoction (YWD) is a classic prescription with the function of nourishing stomach yin. In this study, the effective components of antioxidant activity of YWD and its possible mechanism were discussed from the point of view of spectral effect relationship and network pharmacology. Firstly, the fingerprints of 10 batches of YWD were established by UPLC-PDA technique, and the 1,1-diphenyl-2-picryl-hydrazyl radical (DPPH) scavenging rate and total antioxidant capacity (T-AOC) were used as the indicators for antioxidant activity in vitro. Then, the spectral effect relationship between the fingerprint profiles and antioxidant capacity was analyzed through grey relational analysis (GRA) and orthogonal projections to latent structures (OPLS). In addition, network pharmacology was employed to predict the potential mechanisms of YWD in the treatment of antioxidant-related diseases. The spectrum-effect relationship indicated that three common peaks were likely to be the most decisive active components, identified as verbascoside, psoralen, and vitexin, respectively. Based on network pharmacology analysis, a total of 83 target genes shared by the active components and antioxidant-related diseases were collected. AKT1, HSP90AA1, SRC, CASP3, and MTOR were closely related to antioxidant therapy and considered as core therapeutic targets. The potential mechanisms of YWD were obtained through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, molecular docking simulations were conducted to evaluate the binding activities between the core therapeutic targets and corresponding compounds. The excellent core protein-compound complexes obtained by molecular docking were simulated by molecular dynamics simulation. The results showed that the active compounds had good binding ability with the selected targets. This study successfully identified the effective components of YWD and predicted the potential targets and pathways, which provided a new idea for the application of YWD in the treatment of antioxidant stress in the future. In addition, the potential active components provide valuable implications for drug screening of related diseases.
期刊介绍:
Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical.
Subject areas include (but are by no means limited to):
Separation
Spectroscopy
Mass spectrometry
Chromatography
Analytical Sample Preparation
Electrochemical analysis
Hyphenated techniques
Data processing
As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.