Handgrip-Ring Structure Sensing Probe Assisted Multiple Signal Amplification Strategy for Sensitive and Label-Free Single-Stranded Nucleic Acid Analysis.

IF 2.3 3区 化学 Q3 CHEMISTRY, ANALYTICAL
Journal of Analytical Methods in Chemistry Pub Date : 2024-10-18 eCollection Date: 2024-01-01 DOI:10.1155/2024/6832856
Ying Ren, Yu He, Ping Li
{"title":"Handgrip-Ring Structure Sensing Probe Assisted Multiple Signal Amplification Strategy for Sensitive and Label-Free Single-Stranded Nucleic Acid Analysis.","authors":"Ying Ren, Yu He, Ping Li","doi":"10.1155/2024/6832856","DOIUrl":null,"url":null,"abstract":"<p><p>Precise and efficient identification of single-stranded nucleic acids is crucial for both pathological research and early diagnosis of diseases, such as cancers. Therefore, we have devised a novel biosensor that utilizes an elegantly designed handgrip-ring structure sensing probe to enhance the detection sensitivity and reduce background signals. The handgrip-ring structure sensing probe combines ring padlock-based target recognition and hairpin structure probe-based signal amplification. The target sequences form a binding interaction with the ring padlock in the sensing probe, leading to the elongation of the single-stranded chain with the assistance of polymerase. This elongation step results in the release of the hairpin probe, triggering a signal amplification process. This design significantly minimized the potential discrepancies that may occur during the signal amplification process, hence bestowing the approach with a low level of background signals. By utilizing this innovative design, the current biosensor demonstrates a remarkable ability to detect miRNA with a limit as low as 376 aM and single-stranded DNA sequences with a limit as low as 45.3 aM. In addition, it possesses exceptional discrimination capabilities. The efficacy of this approach in diagnosing targets was also effectively proved by the rational redesign of the ring padlock.</p>","PeriodicalId":14974,"journal":{"name":"Journal of Analytical Methods in Chemistry","volume":"2024 ","pages":"6832856"},"PeriodicalIF":2.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11511596/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Analytical Methods in Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1155/2024/6832856","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Precise and efficient identification of single-stranded nucleic acids is crucial for both pathological research and early diagnosis of diseases, such as cancers. Therefore, we have devised a novel biosensor that utilizes an elegantly designed handgrip-ring structure sensing probe to enhance the detection sensitivity and reduce background signals. The handgrip-ring structure sensing probe combines ring padlock-based target recognition and hairpin structure probe-based signal amplification. The target sequences form a binding interaction with the ring padlock in the sensing probe, leading to the elongation of the single-stranded chain with the assistance of polymerase. This elongation step results in the release of the hairpin probe, triggering a signal amplification process. This design significantly minimized the potential discrepancies that may occur during the signal amplification process, hence bestowing the approach with a low level of background signals. By utilizing this innovative design, the current biosensor demonstrates a remarkable ability to detect miRNA with a limit as low as 376 aM and single-stranded DNA sequences with a limit as low as 45.3 aM. In addition, it possesses exceptional discrimination capabilities. The efficacy of this approach in diagnosing targets was also effectively proved by the rational redesign of the ring padlock.

用于灵敏无标记单链核酸分析的手握环结构传感探针辅助多重信号放大策略。
精确高效地识别单链核酸对于病理研究和癌症等疾病的早期诊断至关重要。因此,我们设计了一种新型生物传感器,利用设计优雅的手握环结构传感探针来提高检测灵敏度并减少背景信号。手握环结构传感探针结合了基于挂锁环的目标识别和基于发夹结构探针的信号放大。目标序列与传感探针中的环状挂锁形成结合作用,在聚合酶的协助下导致单链的延伸。这一延伸步骤导致发夹探针的释放,引发信号放大过程。这种设计大大减少了信号放大过程中可能出现的偏差,因此这种方法的背景信号水平很低。通过采用这种创新设计,目前的生物传感器显示出卓越的能力,可检测低至 376 aM 的 miRNA 和低至 45.3 aM 的单链 DNA 序列。此外,它还具有卓越的分辨能力。对环形挂锁的合理重新设计也有效证明了这种方法在诊断目标方面的功效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Analytical Methods in Chemistry
Journal of Analytical Methods in Chemistry CHEMISTRY, ANALYTICAL-ENGINEERING, CIVIL
CiteScore
4.80
自引率
3.80%
发文量
79
审稿时长
6-12 weeks
期刊介绍: Journal of Analytical Methods in Chemistry publishes papers reporting methods and instrumentation for chemical analysis, and their application to real-world problems. Articles may be either practical or theoretical. Subject areas include (but are by no means limited to): Separation Spectroscopy Mass spectrometry Chromatography Analytical Sample Preparation Electrochemical analysis Hyphenated techniques Data processing As well as original research, Journal of Analytical Methods in Chemistry also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信