Elia Lombardo, Laura Velezmoro, Sebastian N Marschner, Moritz Rabe, Claudia Tejero, Christianna I Papadopoulou, Zhuojie Sui, Michael Reiner, Stefanie Corradini, Claus Belka, Christopher Kurz, Marco Riboldi, Guillaume Landry
{"title":"Patient-Specific Deep Learning Tracking Framework for Real-Time 2D Target Localization in Magnetic Resonance Imaging-Guided Radiation Therapy.","authors":"Elia Lombardo, Laura Velezmoro, Sebastian N Marschner, Moritz Rabe, Claudia Tejero, Christianna I Papadopoulou, Zhuojie Sui, Michael Reiner, Stefanie Corradini, Claus Belka, Christopher Kurz, Marco Riboldi, Guillaume Landry","doi":"10.1016/j.ijrobp.2024.10.021","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>We propose a tumor tracking framework for 2D cine magnetic resonance imaging (MRI) based on a pair of deep learning (DL) models relying on patient-specific (PS) training.</p><p><strong>Methods and materials: </strong>The chosen DL models are: (1) an image registration transformer and (2) an auto-segmentation convolutional neural network (CNN). We collected over 1,400,000 cine MRI frames from 219 patients treated on a 0.35 T MRI-linac plus 7500 frames from additional 35 patients that were manually labeled and subdivided into fine-tuning, validation, and testing sets. The transformer was first trained on the unlabeled data (without segmentations). We then continued training (with segmentations) either on the fine-tuning set or for PS models based on 8 randomly selected frames from the first 5 seconds of each patient's cine MRI. The PS auto-segmentation CNN was trained from scratch with the same 8 frames for each patient, without pre-training. Furthermore, we implemented B-spline image registration as a conventional model, as well as different baselines. Output segmentations of all models were compared on the testing set using the Dice similarity coefficient, the 50% and 95% Hausdorff distance (HD<sub>50%</sub>/HD<sub>95%</sub>), and the root-mean-square-error of the target centroid in superior-inferior direction.</p><p><strong>Results: </strong>The PS transformer and CNN significantly outperformed all other models, achieving a median (interquartile range) dice similarity coefficient of 0.92 (0.03)/0.90 (0.04), HD<sub>50%</sub> of 1.0 (0.1)/1.0 (0.4) mm, HD<sub>95%</sub> of 3.1 (1.9)/3.8 (2.0) mm, and root-mean-square-error of the target centroid in superior-inferior direction of 0.7 (0.4)/0.9 (1.0) mm on the testing set. Their inference time was about 36/8 ms per frame and PS fine-tuning required 3 min for labeling and 8/4 min for training. The transformer was better than the CNN in 9/12 patients, the CNN better in 1/12 patients, and the 2 PS models achieved the same performance on the remaining 2/12 testing patients.</p><p><strong>Conclusions: </strong>For targets in the thorax, abdomen, and pelvis, we found 2 PS DL models to provide accurate real-time target localization during MRI-guided radiotherapy.</p>","PeriodicalId":14215,"journal":{"name":"International Journal of Radiation Oncology Biology Physics","volume":" ","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Radiation Oncology Biology Physics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ijrobp.2024.10.021","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: We propose a tumor tracking framework for 2D cine magnetic resonance imaging (MRI) based on a pair of deep learning (DL) models relying on patient-specific (PS) training.
Methods and materials: The chosen DL models are: (1) an image registration transformer and (2) an auto-segmentation convolutional neural network (CNN). We collected over 1,400,000 cine MRI frames from 219 patients treated on a 0.35 T MRI-linac plus 7500 frames from additional 35 patients that were manually labeled and subdivided into fine-tuning, validation, and testing sets. The transformer was first trained on the unlabeled data (without segmentations). We then continued training (with segmentations) either on the fine-tuning set or for PS models based on 8 randomly selected frames from the first 5 seconds of each patient's cine MRI. The PS auto-segmentation CNN was trained from scratch with the same 8 frames for each patient, without pre-training. Furthermore, we implemented B-spline image registration as a conventional model, as well as different baselines. Output segmentations of all models were compared on the testing set using the Dice similarity coefficient, the 50% and 95% Hausdorff distance (HD50%/HD95%), and the root-mean-square-error of the target centroid in superior-inferior direction.
Results: The PS transformer and CNN significantly outperformed all other models, achieving a median (interquartile range) dice similarity coefficient of 0.92 (0.03)/0.90 (0.04), HD50% of 1.0 (0.1)/1.0 (0.4) mm, HD95% of 3.1 (1.9)/3.8 (2.0) mm, and root-mean-square-error of the target centroid in superior-inferior direction of 0.7 (0.4)/0.9 (1.0) mm on the testing set. Their inference time was about 36/8 ms per frame and PS fine-tuning required 3 min for labeling and 8/4 min for training. The transformer was better than the CNN in 9/12 patients, the CNN better in 1/12 patients, and the 2 PS models achieved the same performance on the remaining 2/12 testing patients.
Conclusions: For targets in the thorax, abdomen, and pelvis, we found 2 PS DL models to provide accurate real-time target localization during MRI-guided radiotherapy.
期刊介绍:
International Journal of Radiation Oncology • Biology • Physics (IJROBP), known in the field as the Red Journal, publishes original laboratory and clinical investigations related to radiation oncology, radiation biology, medical physics, and both education and health policy as it relates to the field.
This journal has a particular interest in original contributions of the following types: prospective clinical trials, outcomes research, and large database interrogation. In addition, it seeks reports of high-impact innovations in single or combined modality treatment, tumor sensitization, normal tissue protection (including both precision avoidance and pharmacologic means), brachytherapy, particle irradiation, and cancer imaging. Technical advances related to dosimetry and conformal radiation treatment planning are of interest, as are basic science studies investigating tumor physiology and the molecular biology underlying cancer and normal tissue radiation response.