{"title":"Charting the growth through intelligence: A SWOC analysis on AI-assisted radiologic bone age estimation.","authors":"Gargi Jani, Bhoomika Patel","doi":"10.1007/s00414-024-03356-3","DOIUrl":null,"url":null,"abstract":"<p><p>Bone age estimation (BAE) is based on skeletal maturity and degenerative process of the skeleton. The clinical importance of BAE is in understanding the pediatric and growth-related disorders; whereas medicolegally it is important in determining criminal responsibility and establishing identification. Artificial Intelligence (AI) has been used in the field of the field of medicine and specifically in diagnostics using medical images. AI can greatly benefit the BAE techniques by decreasing the intra observer and inter observer variability as well as by reducing the analytical time. The AI techniques rely on object identification, feature extraction and segregation. Bone age assessment is the classical example where the concepts of AI such as object recognition and segregation can be used effectively. The paper describes various AI based algorithms developed for the purpose of radiologic BAE and the performances of the models. In the current paper we have also carried out qualitative analysis using Strength, Weakness, Opportunities and Challenges (SWOC) to examine critical factors that contribute to the application of AI in BAE. To best of our knowledge, the SWOC analysis is being carried out for the first time to assess the applicability of AI in BAE. Based on the SWOC analysis we have provided strategies for successful implementation of AI in BAE in forensic and medicolegal context.</p>","PeriodicalId":14071,"journal":{"name":"International Journal of Legal Medicine","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Legal Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00414-024-03356-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bone age estimation (BAE) is based on skeletal maturity and degenerative process of the skeleton. The clinical importance of BAE is in understanding the pediatric and growth-related disorders; whereas medicolegally it is important in determining criminal responsibility and establishing identification. Artificial Intelligence (AI) has been used in the field of the field of medicine and specifically in diagnostics using medical images. AI can greatly benefit the BAE techniques by decreasing the intra observer and inter observer variability as well as by reducing the analytical time. The AI techniques rely on object identification, feature extraction and segregation. Bone age assessment is the classical example where the concepts of AI such as object recognition and segregation can be used effectively. The paper describes various AI based algorithms developed for the purpose of radiologic BAE and the performances of the models. In the current paper we have also carried out qualitative analysis using Strength, Weakness, Opportunities and Challenges (SWOC) to examine critical factors that contribute to the application of AI in BAE. To best of our knowledge, the SWOC analysis is being carried out for the first time to assess the applicability of AI in BAE. Based on the SWOC analysis we have provided strategies for successful implementation of AI in BAE in forensic and medicolegal context.
期刊介绍:
The International Journal of Legal Medicine aims to improve the scientific resources used in the elucidation of crime and related forensic applications at a high level of evidential proof. The journal offers review articles tracing development in specific areas, with up-to-date analysis; original articles discussing significant recent research results; case reports describing interesting and exceptional examples; population data; letters to the editors; and technical notes, which appear in a section originally created for rapid publication of data in the dynamic field of DNA analysis.