{"title":"The triple combination DBDx alleviates cytokine storm and related lung injury","authors":"","doi":"10.1016/j.intimp.2024.113431","DOIUrl":null,"url":null,"abstract":"<div><div>Cytokine storm is a life-threatening disorder, and therapeutic treatments are urgently needed. Here, we investigated the anti-cytokine storm efficacy of DBDx, a triple drug combination composed of dipyridamole, ubenimex and dexamethasone. Evaluated by lipopolysaccharide (LPS)-induced cytokine storm murine model, DBDx significantly improved survival rate and prolonged survival time of the model mice. Notably, the efficacy of DBDx was higher than that of dipyridamole, ubenimex and dexamethasone. Determined by ELISA, DBDx significantly reduced the LPS-stimulated serum levels of TNF-α, IL-6 and IL-1β in mice. Luminex assay showed that DBDx suppressed the serum levels of a wide variety of inflammatory cytokines and chemokines, which was more potent than dexamethasone alone. Otherwise, DBDx exerted similar inhibitory effects on cytokine profiles in bronchoalveolar lavage fluid. Histopathological observation showed that DBDx significantly reduced the LPS-induced thickening of alveolar septum, indicating its suppression of capillary congestion, edema and neutrophil infiltration in the lung. Ultra-structure analysis showed that DBDx suppressed the LPS-induced morphological changes of microvilli in type II pneumocytes. In vitro experiment showed that DBDx inhibited IL-6 and TNF-α secretion in THP-1 cells, and downregulated TLR4/NF-κB/HIF-1α signaling pathway. All of these results demonstrate that DBDx, a triple combination of clinical orally-administered drugs, can alleviate cytokine storm and related lung injury. DBDx is beneficial for treating cytokine storm disorders.</div></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924019532","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cytokine storm is a life-threatening disorder, and therapeutic treatments are urgently needed. Here, we investigated the anti-cytokine storm efficacy of DBDx, a triple drug combination composed of dipyridamole, ubenimex and dexamethasone. Evaluated by lipopolysaccharide (LPS)-induced cytokine storm murine model, DBDx significantly improved survival rate and prolonged survival time of the model mice. Notably, the efficacy of DBDx was higher than that of dipyridamole, ubenimex and dexamethasone. Determined by ELISA, DBDx significantly reduced the LPS-stimulated serum levels of TNF-α, IL-6 and IL-1β in mice. Luminex assay showed that DBDx suppressed the serum levels of a wide variety of inflammatory cytokines and chemokines, which was more potent than dexamethasone alone. Otherwise, DBDx exerted similar inhibitory effects on cytokine profiles in bronchoalveolar lavage fluid. Histopathological observation showed that DBDx significantly reduced the LPS-induced thickening of alveolar septum, indicating its suppression of capillary congestion, edema and neutrophil infiltration in the lung. Ultra-structure analysis showed that DBDx suppressed the LPS-induced morphological changes of microvilli in type II pneumocytes. In vitro experiment showed that DBDx inhibited IL-6 and TNF-α secretion in THP-1 cells, and downregulated TLR4/NF-κB/HIF-1α signaling pathway. All of these results demonstrate that DBDx, a triple combination of clinical orally-administered drugs, can alleviate cytokine storm and related lung injury. DBDx is beneficial for treating cytokine storm disorders.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.