RNAseq-Based Carboxylesterase Nl-EST1 Gene Expression Plasticity Identification and Its Potential Involvement in Fenobucarb Resistance in the Brown Planthopper Nilaparvata lugens.
Murtaza Khan, Changhee Han, Nakjung Choi, Juil Kim
{"title":"RNAseq-Based Carboxylesterase <i>Nl-EST1</i> Gene Expression Plasticity Identification and Its Potential Involvement in Fenobucarb Resistance in the Brown Planthopper <i>Nilaparvata lugens</i>.","authors":"Murtaza Khan, Changhee Han, Nakjung Choi, Juil Kim","doi":"10.3390/insects15100743","DOIUrl":null,"url":null,"abstract":"<p><p>Carbamate insecticides have been used for over four decades to control brown planthopper, <i>Nilaparvata lugens</i>, but resistance has been reported in many countries, including the Republic of Korea. The bioassay results on resistance to fenobucarb showed that the LC<sub>50</sub> values were 3.08 for the susceptible strain, 10.06 for the 2015 strain, and 73.98 mg/L for the 2019 strain. Compared to the susceptible strain, the 2015 and 2019 strains exhibited resistance levels 3.27 and 24.02 times higher, respectively. To elucidate the reason for the varying levels of resistance to fenobucarb in these strains, mutations in the <i>acetylcholinesterase 1</i> (<i>ACE1</i>) gene, the target gene of carbamate, were investigated, but no previously reported mutations were confirmed. Through RNA-seq analysis focusing on the expression of detoxification enzyme genes as an alternative resistance mechanism, it was found that the carboxylesterase gene <i>Nl-EST1</i> was overexpressed 2.4 times in the 2015 strain and 4.7 times in the 2019 strain compared to the susceptible strain. This indicates a strong correlation between the level of resistance development in each strain and the expression level of <i>Nl-EST1</i>. Previously, <i>Nl-EST1</i> was reported in an organophosphorus insecticide-resistant strain of Sri Lanka 2000. Thus, <i>Nl-EST1</i> is crucial for developing resistance to organophosphorus and carbamate insecticides. Resistance-related genes such as <i>Nl-EST1</i> could serve as expression markers for resistance diagnosis, and can apply to integrated resistance management of <i>N. lugens</i>.</p>","PeriodicalId":13642,"journal":{"name":"Insects","volume":"15 10","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508480/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insects","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3390/insects15100743","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbamate insecticides have been used for over four decades to control brown planthopper, Nilaparvata lugens, but resistance has been reported in many countries, including the Republic of Korea. The bioassay results on resistance to fenobucarb showed that the LC50 values were 3.08 for the susceptible strain, 10.06 for the 2015 strain, and 73.98 mg/L for the 2019 strain. Compared to the susceptible strain, the 2015 and 2019 strains exhibited resistance levels 3.27 and 24.02 times higher, respectively. To elucidate the reason for the varying levels of resistance to fenobucarb in these strains, mutations in the acetylcholinesterase 1 (ACE1) gene, the target gene of carbamate, were investigated, but no previously reported mutations were confirmed. Through RNA-seq analysis focusing on the expression of detoxification enzyme genes as an alternative resistance mechanism, it was found that the carboxylesterase gene Nl-EST1 was overexpressed 2.4 times in the 2015 strain and 4.7 times in the 2019 strain compared to the susceptible strain. This indicates a strong correlation between the level of resistance development in each strain and the expression level of Nl-EST1. Previously, Nl-EST1 was reported in an organophosphorus insecticide-resistant strain of Sri Lanka 2000. Thus, Nl-EST1 is crucial for developing resistance to organophosphorus and carbamate insecticides. Resistance-related genes such as Nl-EST1 could serve as expression markers for resistance diagnosis, and can apply to integrated resistance management of N. lugens.
InsectsAgricultural and Biological Sciences-Insect Science
CiteScore
5.10
自引率
10.00%
发文量
1013
审稿时长
21.77 days
期刊介绍:
Insects (ISSN 2075-4450) is an international, peer-reviewed open access journal of entomology published by MDPI online quarterly. It publishes reviews, research papers and communications related to the biology, physiology and the behavior of insects and arthropods. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.