Identification of JAZF1, KNOP1, and PLEKHA1 as causally associated genes and drug targets for Alzheimer's disease: a summary data-based Mendelian randomization study.
Yuhan Zhai, Ning Li, Yujie Zhang, Haibin Li, Lijuan Wu, Cuibai Wei, Jianguang Ji, Deqiang Zheng
{"title":"Identification of JAZF1, KNOP1, and PLEKHA1 as causally associated genes and drug targets for Alzheimer's disease: a summary data-based Mendelian randomization study.","authors":"Yuhan Zhai, Ning Li, Yujie Zhang, Haibin Li, Lijuan Wu, Cuibai Wei, Jianguang Ji, Deqiang Zheng","doi":"10.1007/s10787-024-01583-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is a growing body of evidence indicating the significant role of the immune system and immune cells in the progression of Alzheimer's disease (AD). However, the exact role of genes from various immune cell types in AD remains unclear. We aimed to utilize summary data-based Mendelian randomization (SMR) to explore the potential causal relationships between genes in specific immune cells and the risk of AD.</p><p><strong>Methods: </strong>By utilizing data sets of expression quantitative trait loci (eQTL) for 14 different immune cell types and large-scale AD genome-wide association study (GWAS), we employed SMR to identify key genes associated with AD within specific immune cells. Sensitivity analyses, including F-statistic, colocalization, and assessment of horizontal pleiotropy, were further conducted to validate the discovered genes. In addition, replication analyses were performed in AD GWAS from the FinnGen consortium. Finally, we further identified existing drugs that target or interact with the druggable genes and reviewed the studies about the associations between these drugs and AD.</p><p><strong>Results: </strong>SMR analysis revealed 342 genes associated with AD across 14 immune cell types. Further sensitivity analyses identified nine genes, CTSH, FCER1G, FNBP4, HLA-E, JAZF1, KNOP1, PLEKHA1, RP11-960L18.1, and ZNF638 that had significant associations with AD across nine specific immune cell types. JAZF1, KNOP1 and PLEKHA1 were replicated in an independent analysis using the GWAS data. The review on gene-related drugs also supported these findings.</p><p><strong>Conclusions: </strong>Our research suggests that the expression of the genes JAZF1, KNOP1, and PLEKHA1 in specific immune cell types is related to the risk of AD.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":"3913-3923"},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01583-z","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: There is a growing body of evidence indicating the significant role of the immune system and immune cells in the progression of Alzheimer's disease (AD). However, the exact role of genes from various immune cell types in AD remains unclear. We aimed to utilize summary data-based Mendelian randomization (SMR) to explore the potential causal relationships between genes in specific immune cells and the risk of AD.
Methods: By utilizing data sets of expression quantitative trait loci (eQTL) for 14 different immune cell types and large-scale AD genome-wide association study (GWAS), we employed SMR to identify key genes associated with AD within specific immune cells. Sensitivity analyses, including F-statistic, colocalization, and assessment of horizontal pleiotropy, were further conducted to validate the discovered genes. In addition, replication analyses were performed in AD GWAS from the FinnGen consortium. Finally, we further identified existing drugs that target or interact with the druggable genes and reviewed the studies about the associations between these drugs and AD.
Results: SMR analysis revealed 342 genes associated with AD across 14 immune cell types. Further sensitivity analyses identified nine genes, CTSH, FCER1G, FNBP4, HLA-E, JAZF1, KNOP1, PLEKHA1, RP11-960L18.1, and ZNF638 that had significant associations with AD across nine specific immune cell types. JAZF1, KNOP1 and PLEKHA1 were replicated in an independent analysis using the GWAS data. The review on gene-related drugs also supported these findings.
Conclusions: Our research suggests that the expression of the genes JAZF1, KNOP1, and PLEKHA1 in specific immune cell types is related to the risk of AD.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]